Particle-Based Approximate Inference
on Graphical Model

Reference:

Probabilistic Graphical Model Ch. 12 (Koller & Friedman)
CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 18,19 (Eric Xing)
Pattern Recognition & Machine Learning Ch. 11. (Bishop)



In terms of difficulty,
there are 3 types of inference problem.
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* Inference which is easily solved with Bayes rule. S

I

]

L

* Inference which is tractable using some dynamic

programming technique. I I

(e.g. Variable Elimination or J-tree algorithm )

o o%.,

Today’s focus

* Inference which is proved intractable

(e.g. Approximation with Optimization or Sampling technique.)

I ®
& should be solved using some Approximate Method. Iﬁ I/Q{
e




Agenda

When to use Particle-Based Approximate Inference ?
Forward Sampling & Importance Sampling

Markov Chain Monte Carlo (MCMC)

Collapsed Particles



Agenda

* When to use Particle-Based Approximate Inference ?



Example : General Factorial HMM

A clique size=5,

intractable most of times.
(No tractable elimination exist...)
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Some Model are Intractable for Exact Inference

Example: A Grid MRF
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Some Model are Intractable for Exact Inference

Example: A Grid MRF
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Some Model are Intractable for Exact Inference

Example: A Grid MRF
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Approximate Inference

<\ ) ) Ve needed.
J/ ./ ./ .
Q () () (.

\_/ \_/

Generally, we will have clique of “size N”
for a N*N grid, which is indeed intractable.



General idea of
Particle-Based (Monte Carlo) Approximation

Most of Queries we want can be formed as: /[ Intractable when K= e,

Eoio[f (X)I=D > P(Xp X )* f (X, Xy )

X1 Xk

which is intractable most of time. Assume we can generate i.i.d. samples
X1, . X" from P(X), we can approximate above using:

A 1 N
f==> f(X™)
N n=1

It’s a unbiased estimator whose variance converges to 0 when N> oo,

.1 N i
E[f]:NE[Z f(X( ))]: E[T(X)] Var. not Related to
n-=1 dimension of X.
A N (o <)
Var[f]= %vﬂ[z f (X(”))]:%Var[f (X)] var>0asN=>
n=1



Which Problem can use
Particle-Based (Monte Carlo) Approximation ?

* Type of queries:

— 1. Likelihood of evidence/assignments on variables
— 2. Conditional Probability of some variables (given others).

et Dechoblo fec : allostai hase]

Problem which can be written as following form:

Eoio[f(X)I=D > P(Xp X ) * £ (X, Xy )



Marginal Distribution (Monte Carlo)

To Compute Marginal Distribution on X,

P(Xk = Xk)

= Z P(Xy =X, X )= ZZ P(X, X )"HX, =%}
X _x

X X
= EP(X)[l{Xk =X 1]

Particle-Based Approximation:

f

1 Q (n)
N;l{xk :Xk}

( Just count the proportion of samples in which X,=x, )



Marginal Joint Distribution (Monte Carlo)

To Compute Marginal Distribution on ( X;, X; )

P(X;=x,X,;=X,)
:ZP(Xi :Xi’xj :Xj’X—ij):y JYP(Xi’Xj’X—k)*l{Xi :Xi&xj :Xj}
X_j Xi X

X _IJ

= EP(X)[l{Xi =X & Xj = Xj}]
Particle-Based Approximation:
f=

l N
Nle{xi(n) =X, XJ(n) _ Xj}

( Just count the proportion of samples in which X;=x; & X;=x; )



So What’s the Problem ?

Note what we can do is:

“Evaluate” the probability/likelihood P(X;=X,..., X =X)-

What we cannot do is:

Summation / Integration in high-dim. space: >, P(X,..., X).

What we want to do (for approximation) is:

“Draw” samples from P(X,,..., X;).

How to make better use of samples ?

How to know we’ve sampled enough ?



How to draw Samples from P(X) ?

* Forward Sampling
draw from ancestor to descendant in BN.

* Rejection Sampling
create samples using Forward Sampling, and reject those
inconsistent with evidence.

* Importance Sampling
Sample from proposal dist. Q(X), but give large weight on
sample with high likelihood in P(X).

* Markov Chain Monte Carlo
Define a Transition Dist. T(x—=2>x’) s.t. samples can get closer
and closer to P(X).



Agenda

* Forward Sampling & Importance Sampling



Forward Sampling

Burglary Earthquake

f 0.05 f 0.01




Forward Sampling

i.i.d Sample : (~b,e,a,j,~”m)




Forward Sampling

Samples: <€——— Particle-Based Represent
(~b,e,a,j,~m) of the joint distribution P(B,E,A,J,M).

P(MM=m)=—= Zl{M " =

~b,~e, a,~j, “m
( ), ~m) P(B=b,M =~m)= Zl{B(”) b,M®™ =~ m}

What if we want samples from P(B, E, A | J=j, M="m) ?

1. Collect all samples in which J=j , M="m .

2. Those samples form the particle-based representation
of P(B,E, A | J=j, M="m).
Disadvantage.......



Forward Sampling from P(Z | Data) ?

Forward Sampling N times.
Collect all samples (2", X") in which X;=1, X,=0, X,;=1, ...... X,=0.

Those samples form the particle-based representation of P(Z| X).

How many such samples can we get ??
= N*P(Data) !! ( Less than 1if N not large enough......)



Importance Sampling to the Rescue

We need not draw from P(X) to compute E,,,[f(X)] :

Erool f (01= 2 POO* ()

_ PO wrixn e 1P wr x
ZQ( )* (Q( X) (X)) = Q(X)[Q(X) (X)]

- P(X(n)) > (n)

EP(X)[f(X)]_ Z(Q(X(n))) f(x )

That is, we can draw from an arbitrary distribution Q(X), but give
larger weights on samples having higher probability under P(X).



Importance Sampling to the Rescue

Sometimes we can only evaluate an unnormalized
distribution: ~
P(X) ,where P(ZX) = P(X)

Then we can estimate Z as follows:

P(X) P(X) ;  1EP(X™)
2= 2 PO0= 200055 " Balge) 27 N;Q(fx(”))

Note that we can compute 7 only if we can evaluate a normalized distribution Q(X) ,
that is, we have ZQ or Q(X) is froma BN.

S '5(X(n))*f (n)
- 8T (X ™)
1c P(X), - _Em[f(X)]_;Q(x“))
Epoolf (X)1=— Q(X)[Q(X) OO Bopo[F(X0]=—25——= X

= Q(X™)



Importance Sampling from P(Z | Data) ?

1. Sampling from P(Z), a normalized distribution obtained from BN
truncating the part with evidence.



Importance Sampling from P(Z | Data) ?

Z ° e % """" @ w™ = P(Data|Z)

X (1 0) (1 . =PAAPQOIB)PLA)..P(O]A)

1. Sampling from P(Z), a normalized distribution obtained from BN
truncating the part with evidence.

2. Give each sample (Z(n), X(n)) a weight:

o _P(2) _P(Z)P(Data|Z)

= =P(Data|Z)
Q(Z) P(Z)



Importance Sampling from P(Z|Data) ?

ABA,...,A w=0.01
/A Q @ * """ @ EA:B:A:...:Bi %03
(B,B,B,...,A) 1.0
X (1 0 1 0 N.=1.31
P(Data)=N_¢/N = 1.31/3
Sampling from P(Z), a normalized distribution obtained from BN
truncating the part with evidence.

Give each sample (Z(n), X(n)) a weight:

o _P(2) _P(Z)P(Data|Z)
Q(Z) P(Z)

N
The effective number of samplesis Ny => w®
=1

=P(Data|Z)

N N
( P(Data) = %Zw‘”) :%Z P(Data|Z™) )
n=1 n=1



Importance Sampling from P(Z | Data) ?

Al ws
' 0@ @ R

(B,B,B,..}A) 1.0

X (1 0 1 0 N_=1.31
P(Data)=N_ /N = 1.31/3

To get estimate of P(Z, | Data) :

R * * *
52, - B| Data) - 20L*0+03%0+10%1_ (o
131
R * * *
P(Z, = A Z, =B|Data) = 0.01 0+§).?3)11+1.o 0 023

Any joint dist. can be estimated. ( No “out of clique” problem)



Bayesian Treatment
with Importance Sampling

. l Ex. Pg(Y=1[|X) = logistic(8,*X+6, )

Y
N

Often, Posterior on parameters 0 :

P(Data|0)P(0)  P(Data|8)P(0)

POIDAR) =0 ey [ P(Data| 9)P(0) do

is intractable because many types of Pg(Data|6) cannot be integrated analytically.

N N
. P(Data|6™ =a) o =a} P(Data|@=a)» {6 =a}
Approximate . Z - HZ:;

— — n=1
with: P(¢ =a|Data) = =

n=1

We need not evaluate “the integration” to estimate P(0|Data) using Importance
Sampling.



P(X) What's the problem ?
P(X) Q(X)
o Sloateteldd == Val(X)

If P(X) and Q(X) not matched properly......
Only small number of samples will fall in the region with high P(X).

=>» Very large N needed to get a good picture of P(X).



How P(Z|X) and Q(Z) Match ?

When evidence is close to root,

forward sampling is a good Q(Z),

which can generate samples with Evidence
high likelihood in P(Z | X).

Q(Z) close to P(Z]| X)




How P(Z|X) and Q(Z) Match ?

When evidence is on the leaves, Q(z) far from P(Z|X)
forward sampling is a bad Q(Z),
yields very low likelihood=P(X|Z).

So we need very large sample size
to get a good picture of P(Z] X).

Evidence

Can we improve with time to draw from a distribution

more like the desired P(Z|X) ?
=2 MCMC try to draw from a distribution closer and closer to P(Z| X).

( Apply equally well in BN & MREF. )




Agenda

Markov Chain Monte Carlo (MCMC)



What is Markov Chain (MC) ?

0.25 0.7 A set of Random Variables:
X = (X, Xy)

Variables change with Time:
X® = (X,®,...X 1)

Possible /0

Configurations

of X \ which take transition following:

P(X(t+1) =x" | X(t) =x) = T(x2>x’)

There is a stationary distribution t;(X) for Transition T, in which:
—v'\ — —v) * ’
nA(X=x") =3, m{(X=x)* T(x=>x’)
(After transition, still the same distribution over all possible configurations X1~X3)

Ex. The MC (Markov Chain) above has only 1 variable X taking on values {x!,x?,x3},

(025 0 075
Thereisam; st. z,*T=[02 05 03]] 0 07 03 |=[02 05 03]=r
|05 05 0




What is MCMC
(Markov Chain Monte Carlo) ?

Importance Sampling is efficient only if Q(X) matches P(X) well.
Finding such Q(X) is difficult.

Instead, MCMC tries to find a transition dist. T(x2>x’), NP

s.t. X tends to transit into states with high P(X),
and finally follows stationary dist. t; = P(X).

Setting X(®=any initial value, we samples X1, X ... XM) following T(x=>x’), and
hope that XM follows stationary distribution m; = P(X).
If XIM) really does, we got a sample XM from P(X).

Why will the MC converge to stationary distribution ? there is a simple, useful
sufficient condition:

“Regular “ Markov Chain : (for finite state space) .
Any state x can reach any other states x’ with prob.>0. | C :;\ "w}
SN T _ AT [ BN P
(all entries of Potential/CPD >0 ) ,}: o] ANy, )
\_I_;"‘v._ll s M-’ij.
N, \_Hix_;- /,- e
= XM follows a unique 1, as M large enough. -
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How to define T(x—=2x’) ? ---- Gibbs Sampling

Gibbs Sampling is the most popular one used in Graphical Model.
In graphical model :

It is easy to draw sample from “each individual variable given others P(X,|X,)",
while drawing from the joint dist. of (X,,X,,...,X,) is difficult.

So, we define T(X=>X’) in Gibbs-Sampling as :
Taking transition of X, ~ X, in turn with transition distribution :

T, (X;2X), T,(X,2X,"), -..... T (x2x)
Where
Tk(xkexk’) — P(szxk’ |X-k) ( Redraw X, ~ conditional dist. given all others. )

In a Graphical Model, X X &

P(X,=x," | X,) = P( X,=x,” | Markov Blanket( X, ) ) X ><4 X X5 —:ﬁ\'tlﬁc;’:fe X



Gibbs Sampling for MRF

B e

Gibbs Sampling : t=1

1. Initialize all variables randomly. 0 — o

for t=1~M | |

for every variable X 0 :

2. Draw X, from P( X | N(X), ). a
end | |
end 0 /0
| |2(X=1Y)
P(X =1|N(X))= e
[Is(X=1Y)+ J]4(X=0Y) d(XY) 0
YeN(X) YeN(X)

0 5

1 1




Gibbs Sampling for MRF

Gibbs Sampling : t=2

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end
[Ts(x =1Y)
P(X =1|N(X)) = UGS,
( NED) [[#(X=1Y)+ []4(X=0,Y) d(Xy) 0 1
YeN(X) YeN(X)
For the central node: 0 5 1
1*9*9*1]
POX=1INCO)) = fgwgetrgagrreg 070 1 1193




Gibbs Sampling for MRF

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end

M_¢(X =1Y)

P(X =1|N(X))= )

( NG [[s(X=1Y)+ J]e(X=0Y)
YeN(X) YeN(X)

For the central node:

9*9*9*9

P(X =1|N(X))= 0.99

9*Q*Q*Q+1*¥1*1*]

d(Xy) O 1
0 5 1
1 1 |9




Gibbs Sampling for MRF

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).
end
end

When M is large enough, XM follows stationary dist. :

70 (X) = P(X):ém(xc)

(Regularity: All entries in the Potential are positive.)

d(Xy) O 1
0 5 1
1 1 |9




Why Gibbs Sampling has mt; = P(X) ?

To prove P(X) is the stationary distribution, we prove P(X) is invariant
under T, (x,2x,):

Assume (X,...,X;) currently follows P(X)= P(X, | X )*P(X_),

1. After T (x,=2x.’), X still follows P(X_) because they are unchanged.

2. After T, (x,2x,.)=P(X,=x,/ | X,) (new state indep. from current value x, )

=> X, (t) still follows P(X, | X_,).

So, after T (X;2X,") , ceeeee, T{(X2X), X=(Xy,-.., X ) still follows P(X).

( Uniqueness & Convergence guaranteed from Regularity of MC. )



Gibbs Sampling not Always Work

When drawing from individual variable is not possible:
( We can evaluate P(Y|X) but not P(X]|Y). )

Non-linear Dependency :

P(Y | X)=N(W, +W,X +W,X? &%) P(X |Y) = P(Y | X)P(X)
P(Y | X) = log istic (w, +w,X,) [ P(Y [ X)P(X) dX
X
N .
P(Y | X)=N( ZK(X,X(”)), o2 ) (ker nel trick) ( Intractable Integration )
n=1

Large State Space : (InStructure Learning, statespace=G,,G,,G;....)

P(Data|G)P(G)
) P(Data|G)P(G)

P(G | Data) =

( Too large state space to do summation )

Other MCMC like Metropolis-Hasting needed. (see reference.)



Metropolis-Hasting ----MCMC

Metropolis-Hasting (M-H) is a general MCMC method to sample P(X]Y)
whenever we can evaluate P(Y|X). ( evaluation of P(X|Y) not needed )

In M-H, instead of drawing from P(X|Y), we draw from another Proposal Dist.
T(x2>x’) based on current sample x, and Accept the Proposal with probability:

1 , If P(X)TX—>X) >P(X)T(X— X)
P(accept fromxto x')=< P(x)T(X— X)
| P(X)T(X—>X)

Accept ?

E T(x=>x’) E



Example : P(X) = N(p,0?)

Proposal Dist. T(x=2>x’) = N( x, 0.2?)

1, 0f | X-p|<|X=u| 15}
P(accept from xto X') =<

. 2
N(X',,u,0'2) Cow |

. 0 (J_Ii l ljﬁ E 255
(T(x—>x")=T(x'— x) this case. )

( red: Reject )
( green: Accept )



Example : Structure Posterior = P(G|Data)

Proposal Distribution: ° TG -G °

T(G—G') » A
= P(add/remove a randomly chosen edge of G =>G") e G G O

1 , if P(Data|G') < P(Data|G)
P(accept fromGto G') =+
P(Data|G'")
| P(Data|G)

(T(G—>G")=T(G'—>G) this case. )



Why Metropolis-Hasting has m; =P(X) ?

Detailed-Balance Sufficient Condition:

If mep(x’)*T(x’>x) = ny(x)*T(x>x’), then m.(x) is stationary under T.

Given desired n(x)=P(X), and a Proposal dist. T(x>x’),

we can let Detailed

Balance satisfied using accept prob. A(x2>x’) :

Assume P(x')T (X'—> X) < P(X)T (x —> x"), then:

We know P(X')T(X'—> X)*1=P(X)T(x > x')*

define A(x — X') =+

P(X)T (X' Xx)
P(X)T(x — x')

(1, P(X)T(X'—= X)>P(X)T(x—> x')
P(x)T (X'— X)

T(x=>x’)

, O.W,
| P(X)T (x— X') “T(x)

@0 1 (x’)



How to Collect Samples ?

Assume we want collecting N samples:

—

000000000

1. Run N times of MCMC and > MC,

(o)
|
. M
collect their Mt samples. N —

0000000000

> MC,

—

i
M

2. Run 1 time of MCMC and collect (M+1)t" ~ (M+N)t samples.

00000000000000000000000000000000000O0

| — MC,
M M+N

What’s the difference ??




How to Collect Samples ?

Assume we want collecting N samples:

Cost = M*N samples

—

. 000000000 0 T
1. Run N times of MCMC and —> MC,
. M + Independent
collect their Mt samples. N — P
Samples
000000000 O _
— —> MmC,
M

2. Run 1 time of MCMC and collect (M+1)t" ~ (M+N)t samples.

Cost=M + N samples

00000000000000000000000000000000000O0

| — MC,
M‘ ,M+N

|
Correlated Samples



Comparison

> MC,

i P>
N i M |\/|+N|v|C1

> MC
M N

E[f]= ELS Zf(X(”)) Zf(x(”)) ZE[f(X(”))]—E[f(X)]

No Independent Assumption Used =2 Unbiased Estimator in both cases.

For simple analysis, Take N=2: Var[f] :Var[l(f (XD)+ £ (X )]
2

£ 1 1 2
var[f]=Var[Z (F(X®)+ £ (X )] = L (Var[f (X ©)]+Var[ f (X @)]+2Cov[ f (X ), £ (X @)])
Var[ f (X)] 4

:%(Var[f(x(l))]+Var[f(X(z))]): >

_Var[f(X)]+ cvar[ f(X)] S Var[ f (X)]
- 2 'Of(X(l)),f(X(z)) 2 2

Practically, many correlated samples (right) outperforms few independent samples (left).



How to Check Convergence ?

. N s f & I . | I T
- Ao v | Hyw e | T omw o
. s BB s o, a = W A « F ug e v
: I % @ 3 = I A L
Moo W @ W @ w W Moo e am  aw M0 &0 em  in e w = 3 W W @ o M@0 w0 a0 @0 a0 &0 @0 70
00000000000000000000000000000000000
| > MC, |
M M+N __ Should be consistent
if converge to 1,
e = o &P ol o R @ B e W
- s PN | may e R o g e e o
- I T T T
: doe & m Ly & = o | e o w
©0000000000000000000000000000000000
1
| — MG,
M M+N

-1 & -
Check Ratio :1/% close to 1enough. (assume K M Cs,each with Nsamples.) f :EZ fi
k=1

K K N
B =Var. between MC—KAZ ) W =Var.within MC = 1) — =3 (F(XEM)- )
k=1 - k=1 n=1



The Critical Problem of MCMC

When p21 , M2 , Var[.] not decreasing with N
=2 MCMC cannot yield acceptable result in reasonable time.

O

& N

o

Taking very large M to converge to i, .

P(X)




How to Reduce Correlation (p)
among Samples ?

Taking Large Step in Sample Space :

* Block Gibbs Sampling

* Collapsed-Particle Sampling



Problem of Gibbs Sampling

Correlation (p) between samples is high,
when correlation among variables X,~X, is high.

Y =

X 0

Taking very large M to converge to ;.



Block Gibbs Sampling
Draw “block” of variables jointly: P(X,Y)=P(X)P(Y | X)

Marginal Y
N
X 100 | 100
QR
(o Je)
13
fe) o

Converge to r; much quickly.



Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

N YA

e s
S @%ﬂ_%@_
7 N O O U Y\/Y\\Y
O—C0—C0—00——20 AN .
O—"C0—0-00 W\




Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.

— ~—

NS WY ()

QOO 090 Al o
00000 @ﬁ;@ﬁ;@_
7 N O . Y\/Y\\Y
o000 AN .
o—C—C—C20 W\




Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.
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Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.
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Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.
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Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

O
on @
ii
</

(©
©

(O
O

iiif

E-OrC
E-1OrC

/
©
Draw A from: @

M(A)=2;f(A.B)M(B) A B) f(B,C) f(C,D) f(D,E)

S— |
S— |
—— |



Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.
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Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.
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Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.
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Draw D from: é

f(C=c,D)M(D) f(a,p)  f(b,c)  f(c,D) f(D,E)
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Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.
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Draw E from: é

f(D=d,E) f(a,b) f(b,c) f(c,d) f(d,E)




Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.
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Draw E from: é

f(D=d,E) f(a,b)  f(b,c) f(c,d) f(d,e)




Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.
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Draw Another Block.
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1. Intractable
with Exact Inference.

2. Gibbs Sampling
may converge too slow.

Divide into 4 blocks:

Student type
KC type
KState
Problem Type

P WNR




N1/

Student:

Indep. to each other
given samples on
other blocks.

>
Easy to Draw Jointly.

Divide into 4 blocks:

Student type
KC type
KState
Problem Type

P WNR




KC: Divide into 4 blocks:
Indep. to each other 1. Student type
given samples on 2. KCtype
other blocks 3. KState

' 4. Problem Type

>
Easy to Draw Jointly.




VALV

Problem Type: Divide into 4 blocks:
Indep. to each other 1. Student type
given samples on 2. KCtype
other blocks 3. KState

' | ' ' 4. Problem Type

>

Easy to Draw Jointly.




KState:

Chain-structured
given samples on
other blocks.

>

Draw jointly using VE.

Divide into 4 blocks:

1. Student type
2. KCtype

3. KState

4. Problem Type




Agenda

* Collapsed Particles



Collapsed Particle

Exact: Ep(x)[f (X)]= Z P(X)™* f(X)

~ ]_ N .
Particle-Based: f:_N E f(X( ))
n=1

Collapsed-Particle:

Divide X into 2 parts {X, X,} , where X, can do inference given X

Eooo [FOOT= S POO™ £(X) = STP(X,) S P(X, | X,)* F(X)
émm[f(xn:%z (TP(X, | XY (Xg, X))

n=1

( If X, contains few variables, Var. can be much reduced !! )



Xd can be exactly
inferenced given Xp.

Divide into {Xp,Xd}

Xp:
Student type
KC type
Problem Type

Xd:
KState




Collapsed Particle with VE
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f(S,KC=k, K1)

To draw X, ,

Given all other variables in Xp
sum out all other variables in Xd

f(S,KC=k,K1,K2)| [S]kcC

M(K1,T1=t1) T

Draw S (given KC=k & T=t) from:

M(S)=
2«1 K2 F(S,KC=k,K1,K2) M(K1,T1=t1) M(S, KC=k,K2)

K1 K2

M(S,KC=kc,K2)

e

K1
T1

/ N\

S KC
K2 K3

K2
T2

K3
T3

f(T3)



Collapsed Particle with VE

To draw X, ,

i
g

Given all other variables in Xp
sum out all other variables in Xd

f(S=s,KC,K1)

M(S=s,KC,K2)

f(S=s,KC,K1,K2)| S|KC
K1 K2

<€

M(K1,T1=t1) T

Draw KC (given S=s & T=t) from: K1

M(KC)= T1
2 k1 Kk F(5=5,KC,K1,K2) M(K1,T1=t1) M(S=s,KC,K2)

/ N\

S KC
K2 K3

K2
T2

K3
T3

f(T3)



Collapsed Particle with VE

To draw X, ,

Given all other variables in Xp
sum out all other variables in Xd

>

S KC
K1 K2

M(K1,S=s, KC=k) l

Draw T1 (given S=s & KC=k) from:

— |R
||—\||—\

M(T1) = >, M(K1,5=s,KC=k) F(K1,T1)

/ N\

S KC
K2 K3

K2
T2

K3
T3

f(T3)



Collect Samples

Xp Xd
(S, KC, T1, T2, T3) (K1, K2, K3)

(Intel, Quick, Hard, Easy, Hard) ({1/3,1/3,1/3},1{1/4,1/4,1/2},{1/2,1/2,0})
(Intel, Slow, Easy, Easy, Hard) ({1/2,1/2,1/4},{1/5,4/5,0}, {1/4,1/4,1/2})

(Dull, Slow, Easy, Easy, Hard) ({1/3,1/3,1/3},{1/4,1/4,1/2},{1/2,1/2,0})

Average Average

épm[f(xnﬁz (TP(X, | XY (X, X))



