Particle-Based Approximate Inference on Graphical Model

Reference:

Probabilistic Graphical Model Ch. 12 (Koller & Friedman) CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 18,19 (Eric Xing) Pattern Recognition & Machine Learning Ch. 11. (Bishop)

In terms of difficulty, there are 3 types of inference problem.

• Inference which is easily solved with Bayes rule.

 Inference which is tractable using some dynamic programming technique.

(e.g. Variable Elimination or J-tree algorithm)

Today's focus

Inference which is proved intractable
 & should be solved using some Approximate Method.
 (e.g. Approximation with Optimization or Sampling technique.) -

Agenda

- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

Agenda

- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

Example: General Factorial HMM

A clique size=5, intractable most of times. (No tractable elimination exist...)

Example: A Grid MRF

Generally, we will have clique of "size N" for a N*N grid, which is indeed intractable.

General idea of Particle-Based (Monte Carlo) Approximation

Most of Queries we want can be formed as:

Intractable when $K \rightarrow \infty$.

$$E_{P(X)}[f(X)] = \sum_{X_1} ... \sum_{X_K} P(X_1 ... X_K) * f(X_1 ... X_K)$$

which is intractable most of time. Assume we can generate i.i.d. samples $X^{(1)}...X^{(n)}$ from P(X), we can approximate above using:

$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} f(X^{(n)})$$

It's a unbiased estimator whose variance converges to 0 when $N \rightarrow \infty$.

$$E[\hat{f}] = \frac{1}{N} E[\sum_{n=1}^{N} f(X^{(n)})] = E[f(X)]$$

$$Var[\hat{f}] = \frac{1}{N^{2}} Var[\sum_{n=1}^{N} f(X^{(n)})] = \frac{1}{N} Var[f(X)]$$

Var. not Related to dimension of X.
Var→0 as N→∞

Which Problem can use Particle-Based (Monte Carlo) Approximation?

Type of queries:

- 1. Likelihood of evidence/assignments on variables
- 2. Conditional Probability of some variables (given others).
- 3. Most Probable Assignment for some variables (given others).

Problem which can be written as following form:

$$E_{P(X)}[f(X)] = \sum_{X_1} ... \sum_{X_K} P(X_1 ... X_K) * f(X_1 ... X_K)$$

Marginal Distribution (Monte Carlo)

To Compute Marginal Distribution on X_k

$$\begin{split} &P(X_{k} = x_{k}) \\ &= \sum_{X_{-k}} P(X_{k} = x_{k}, X_{-k}) = \sum_{X_{k}} \sum_{X_{-k}} P(X_{k}, X_{-k}) * 1\{X_{k} = x_{k}\} \\ &= E_{P(X)}[1\{X_{k} = x_{k}\}] \end{split}$$

Particle-Based Approximation:

$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} 1\{X_k^{(n)} = x_k\}$$

(Just count the proportion of samples in which $X_k = x_k$)

Marginal Joint Distribution (Monte Carlo)

To Compute Marginal Distribution on (X_i, X_i)

$$\begin{split} &P(X_{i} = x_{i}, X_{j} = x_{j}) \\ &= \sum_{X_{-ij}} P(X_{i} = x_{i}, X_{j} = x_{j}, X_{-ij}) = \sum_{X_{-ij}} \sum_{X_{i}} \sum_{X_{j}} P(X_{i}, X_{j}, X_{-k}) * 1\{X_{i} = x_{i} & X_{j} = x_{j}\} \\ &= E_{P(X)} [1\{X_{i} = x_{i} & X_{j} = x_{j}\}] \end{split}$$

Particle-Based Approximation:

$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} 1\{X_i^{(n)} = X_i, X_j^{(n)} = X_j\}$$

(Just count the proportion of samples in which $X_i=x_i \& X_j=x_j$)

So What's the Problem?

Note what we can do is:

"Evaluate" the probability/likelihood $P(X_1=x_1,...,X_K=x_K)$.

What we **cannot** do is:

Summation / Integration in high-dim. space: $\sum_{X} P(X_1,...,X_K)$.

What we want to do (for approximation) is:

"Draw" samples from $P(X_1,...,X_K)$.

How to make better use of samples?

How to know we've sampled enough?

How to draw Samples from P(X)?

Forward Sampling

draw from ancestor to descendant in BN.

Rejection Sampling

create samples using Forward Sampling, and reject those inconsistent with evidence.

Importance Sampling

Sample from proposal dist. Q(X), but give large weight on sample with high likelihood in P(X).

Markov Chain Monte Carlo

Define a Transition Dist. $T(x \rightarrow x')$ s.t. samples can get closer and closer to P(X).

Agenda

- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

Forward Sampling

Forward Sampling

Forward Sampling

Particle-Based Represent of the joint distribution P(B,E,A,J,M).

$$P(M = m) = \frac{1}{N} \sum_{n=1}^{N} 1\{M^{(n)} = m\}$$

$$P(B = b, M = \sim m) = \frac{1}{N} \sum_{n=1}^{N} 1\{B^{(n)} = b, M^{(n)} = \sim m\}$$

What if we want samples from P($B, E, A \mid J=j, M=^m$)?

- 1. Collect all samples in which J=j , M=~m .
- 2. Those samples form the particle-based representation of $P(B, E, A \mid J=j, M=^m)$.

Forward Sampling from P(Z|Data)?

- 1. Forward Sampling N times.
- 2. Collect all samples $(Z^{(n)}, X^{(n)})$ in which $X_1=1, X_2=0, X_3=1, X_K=0$.
- 3. Those samples form the particle-based representation of P(Z|X).

How many such samples can we get ??

→ N*P(Data) !! (Less than 1 if N not large enough.....)

Solutions.....

Importance Sampling to the Rescue

We need not draw from P(X) to compute $E_{P(X)}[f(X)]$:

$$E_{P(X)}[f(X)] = \sum_{X} P(X) * f(X)$$

$$= \sum_{X} Q(X) * (\frac{P(X)}{Q(X)} * f(X)) = E_{Q(X)}[\frac{P(X)}{Q(X)} * f(X)]$$

$$\hat{E}_{P(X)}[f(X)] = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{P(X^{(n)})}{Q(X^{(n)})} \right) * f(X^{(n)})$$

That is, we can draw from an arbitrary distribution Q(X), but give larger weights on samples having higher probability under P(X).

Importance Sampling to the Rescue

Sometimes we can only evaluate an unnormalized distribution : $\approx \infty$

$$\widetilde{P}(X)$$
, where $\frac{\widetilde{P}(X)}{Z} = P(X)$

Then we can estimate Z as follows:

$$Z = \sum_{X} \widetilde{P}(X) = \sum_{X} Q(X) \frac{\widetilde{P}(X)}{Q(X)} = E_{Q(X)} \left[\frac{\widetilde{P}(X)}{Q(X)} \right] \qquad \qquad \hat{Z} = \frac{1}{N} \sum_{n=1}^{N} \frac{\widetilde{P}(X^{(n)})}{Q(X^{(n)})}$$

Note that we can compute \hat{Z} only if we can evaluate a **normalized distribution** Q(X) , that is, we have Z_Q or Q(X) is from a BN.

$$E_{P(X)}[f(X)] = \frac{1}{Z} E_{Q(X)} \left[\frac{\tilde{P}(X)}{Q(X)} * f(X) \right] \qquad \hat{E}_{P(X)}[f(X)] = \frac{\hat{E}_{\tilde{P}(X)}[f(X)]}{\hat{Z}} = \frac{\sum_{n=1}^{N} \frac{\tilde{P}(X^{(n)})}{Q(X^{(n)})} * f(X^{(n)})}{\sum_{n=1}^{N} \frac{\tilde{P}(X^{(n)})}{Q(X^{(n)})}}$$

 Sampling from P(Z), a normalized distribution obtained from BN truncating the part with evidence.

- 1. Sampling from P(Z), a normalized distribution obtained from BN truncating the part with evidence.
- 2. Give each sample (Z(n), X(n)) a weight:

$$w^{(n)} = \frac{\widetilde{P}(Z)}{Q(Z)} = \frac{P(Z)P(Data \mid Z)}{P(Z)} = P(Data \mid Z)$$

- Sampling from P(Z), a normalized distribution obtained from BN truncating the part with evidence.
- 2. Give each sample (Z(n), X(n)) a weight:

$$w^{(n)} = \frac{\widetilde{P}(Z)}{Q(Z)} = \frac{P(Z)P(Data \mid Z)}{P(Z)} = P(Data \mid Z)$$

3. The effective number of samples is $N_{eff} = \sum_{n=1}^{N} w^{(n)}$

$$(\hat{P}(Data) = \frac{1}{N} \sum_{n=1}^{N} w^{(n)} = \frac{1}{N} \sum_{n=1}^{N} P(Data \mid Z^{(n)}))$$

To get estimate of $P(Z_1 | Data)$:

$$\hat{P}(Z_1 = B \mid Data) = \frac{0.01*0 + 0.3*0 + 1.0*1}{1.31} = 0.76$$

$$\hat{P}(Z_1 = A, Z_K = B \mid Data) = \frac{0.01 \cdot 0 + 0.3 \cdot 1 + 1.0 \cdot 0}{1.31} = 0.23$$

Any joint dist. can be estimated. (No "out of clique" problem)

Bayesian Treatment with Importance Sampling

Ex.
$$P_{\theta}(Y=1|X) = \text{logistic}(\theta_1^*X + \theta_0)$$

Often, Posterior on parameters θ :

$$P(\theta \mid Data) = \frac{P(Data \mid \theta)P(\theta)}{P(Data)} = \frac{P(Data \mid \theta)P(\theta)}{\int_{\alpha} P(Data \mid \theta)P(\theta) \ d\theta}$$

is **intractable** because many types of P_{θ} (Data $| \theta$) cannot be integrated analytically.

Approximate with:
$$\hat{P}(\theta = a \mid Data) = \frac{\sum_{n=1}^{N} P(Data \mid \theta^{(n)} = a) \ 1\{\theta^{(n)} = a\}}{\sum_{n=1}^{N} P(Data \mid \theta^{(n)})} = \frac{P(Data \mid \theta = a) \sum_{n=1}^{N} 1\{\theta^{(n)} = a\}}{\hat{P}(Data)}$$

We need not evaluate "the integration" to estimate $P(\theta | Data)$ using Importance Sampling.

If P(X) and Q(X) not matched properly......

Only small number of samples will fall in the region with high P(X).

→ Very large N needed to get a good picture of P(X).

How P(Z|X) and Q(Z) Match?

When evidence is close to root, forward sampling is a good Q(Z), which can generate samples with high likelihood in P(Z|X).

mples with Evidence X).

Q(Z) close to P(Z|X)

How P(Z|X) and Q(Z) Match?

When evidence is on the leaves, forward sampling is a bad Q(Z), yields very low likelihood=P(X|Z).

So we need very large sample size to get a good picture of P(Z|X).

Evidence

Q(Z) far from P(Z|X)

Can we **improve with time** to draw from a distribution more like the desired P(Z|X)?

→ MCMC try to draw from a distribution closer and closer to P(Z|X).
(Apply equally well in BN & MRF.)

Agenda

- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

What is Markov Chain (MC)?

A set of Random Variables:

$$\mathbf{X} = (X_1, \dots, X_K)$$

Variables change with Time:

$$\mathbf{X}^{(t)} = (\mathbf{X}_1^{(t)}, \dots, \mathbf{X}_K^{(t)})$$

which take transition following:

$$P(\mathbf{X^{(t+1)}} = \mathbf{x'} \mid \mathbf{X^{(t)}} = \mathbf{x}) = T(\mathbf{x} \rightarrow \mathbf{x'})$$

There is a stationary distribution $\pi_{\mathsf{T}}(\mathsf{X})$ for Transition T, in which:

$$\pi_T(X=x') = \sum_x \pi_T(X=x) * T(x \rightarrow x')$$

(After transition, still the same distribution over all possible configurations X¹~X³)

Ex. The MC (Markov Chain) above has only 1 variable X taking on values $\{x^1, x^2, x^3\}$,

There is a
$$\pi_T$$
 s.t. $\pi_T * T = \begin{bmatrix} 0.2 & 0.5 & 0.3 \end{bmatrix} \begin{bmatrix} 0.25 & 0 & 0.75 \\ 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.5 & 0.3 \end{bmatrix} = \pi_T$

What is MCMC (Markov Chain Monte Carlo)?

Importance Sampling is efficient only if Q(X) matches P(X) well. Finding such Q(X) is difficult.

Instead, MCMC tries to find a transition dist. $T(x \rightarrow x')$, s.t. **X tends to transit into states with high P(X)**, and finally follows stationary dist. $\pi_T = P(X)$.

Setting $X^{(0)}$ =any initial value, we samples $X^{(1)}, X^{(2)}, \dots, X^{(M)}$ following $T(x \rightarrow x')$, and hope that $X^{(M)}$ follows stationary distribution $\pi_T = P(X)$.

If $X^{(M)}$ really does, we got a sample $X^{(M)}$ from P(X).

Why will the MC **converge to stationary distribution**? there is a simple, useful **sufficient** condition:

"Regular " Markov Chain: (for finite state space)
Any state x can reach any other states x' with prob. > 0.
(all entries of Potential/CPD > 0)

 \rightarrow X^(M) follows a unique π_{τ} as M large enough.

Example Result

How to define $T(x \rightarrow x')$? ---- Gibbs Sampling

Gibbs Sampling is the most popular one used in Graphical Model. In graphical model :

It is easy to draw sample from "each individual variable given others $P(X_k | X_{-k})$ ", while drawing from the joint dist. of $(X_1, X_2, ..., X_K)$ is difficult.

So, we define $T(X \rightarrow X')$ in Gibbs-Sampling as :

Taking transition of $X_1 \sim X_K$ in turn with transition distribution :

$$T_1(x_1 \rightarrow x_1'), T_2(x_2 \rightarrow x_2'), \dots, T_K(x_K \rightarrow x_K')$$

Where

$$T_k(x_k \rightarrow x_k') = P(X_k = x_k' \mid X_{-k})$$
 (Redraw $X_k \sim$ conditional dist. given all others.)

In a Graphical Model,

$$P(X_k=x_k'|X_{-k}) = P(X_k=x_k'|Markov Blanket(X_k))$$

Gibbs Sampling:

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X_t from P(X | N(X)_{t-1}).
 end
 end

$$P(|X = 1| N(X)) = \frac{\prod_{Y \in N(X)} \phi(X = 1, Y)}{\prod_{Y \in N(X)} \phi(X = 1, Y) + \prod_{Y \in N(X)} \phi(X = 0, Y)}$$

ф(X,Y)	0	1
0	5	1
1	1	9

Gibbs Sampling:

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X_t from P(X | N(X)_{t-1}).
 end

$$P(|X = 1| N(X)) = \frac{\prod_{Y \in N(X)} \phi(X = 1, Y)}{\prod_{Y \in N(X)} \phi(X = 1, Y) + \prod_{Y \in N(X)} \phi(X = 0, Y)}$$

For the central node:

end

$$P(X=1|N(X)) = \frac{1*9*9*1}{1*9*9*1+5*1*1*5} = 0.76$$

ф(Х,Ү)

)

1

9

0

5

1

1

Gibbs Sampling:

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X_t from P(X | N(X)_{t-1}).
 end

$$P(|X = 1| N(X)) = \frac{\prod_{Y \in N(X)} \phi(X = 1, Y)}{\prod_{Y \in N(X)} \phi(X = 1, Y) + \prod_{Y \in N(X)} \phi(X = 0, Y)}$$

For the central node:

$$P(X=1|N(X)) = \frac{9*9*9*9}{9*9*9*9+1*1*1*1} = 0.99$$

ф(X,Y)

)

1

 $\mathbf{0}$

5

1

1 9

Gibbs Sampling:

end

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X_t from P(X | N(X)_{t-1}).
 end

t=3

When M is large enough, X(M) follows stationary dist. :

$$\pi_T(X) = P(X) = \frac{1}{Z} \prod_C \phi(X_C)$$

(Regularity: All entries in the Potential are positive.)

ф	(X,	Y)	

0

5 1

1

1 9

Why Gibbs Sampling has $\pi_T = P(X)$?

To prove P(X) is the stationary distribution, we prove P(X) is invariant under $T_k(x_k \rightarrow x_k')$:

Assume $(X_1,...,X_K)$ currently follows $P(X) = P(X_k | X_{-k}) * P(X_{-k})$,

- 1. After $T_k(x_k \rightarrow x_k')$, X_{-K} still follows $P(X_{-k})$ because they are unchanged.
- 2. After $T_k(x_k \rightarrow x_k') = P(X_k = x_k' \mid X_{-k})$ (new state indep. from current value x_k) $\rightarrow X_k(t)$ still follows $P(X_k \mid X_{-k})$.

So, after $T_1(x_1 \rightarrow x_1')$,, $T_1(x_K \rightarrow x_K')$, $X=(X_1,...,X_K)$ still follows P(X).

(Uniqueness & Convergence guaranteed from Regularity of MC.)

Gibbs Sampling not Always Work

When drawing from individual variable is not possible:

(We can evaluate P(Y|X) but not P(X|Y).)

Non-linear Dependency:

$$P(Y | X) = N(w_0 + w_1 X + w_2 X^2, \sigma^2)$$

$$P(Y | X) = \log i stic (w_0 + w_1 X_1)$$

$$P(Y | X) = N(\sum_{n=1}^{N} K(X, X^{(n)}), \sigma^2) \text{ (ker nel trick)}$$

$$P(X | Y) = \frac{P(Y | X)P(X)}{\int_X P(Y | X)P(X) dX}$$

$$P(Y | X) = N(\sum_{n=1}^{N} K(X, X^{(n)}), \sigma^2) \text{ (ker nel trick)}$$

Large State Space: (In Structure Learning, statespace = $G_1, G_2, G_3....$)

$$P(G \mid Data) = \frac{P(Data \mid G)P(G)}{\sum_{G} P(Data \mid G)P(G)}$$

(Too large state space to do summation)

Other MCMC like **Metropolis-Hasting** needed. (see reference.)

Metropolis-Hasting ---- MCMC

Metropolis-Hasting (M-H) is a general MCMC method to sample P(X|Y) whenever we can evaluate P(Y|X). (evaluation of P(X|Y) not needed)

In M-H, instead of drawing from P(X|Y), we draw from another **Proposal Dist.** $T(x \rightarrow x')$ based on current sample x, and **Accept the Proposal** with probability:

$$P(accept \ from \ x \ to \ x') = \begin{cases} 1 &, \ if \ P(x')T(x' \to x) > P(x)T(x \to x') \\ \frac{P(x')T(x' \to x)}{P(x)T(x \to x')} &, \ o.w. \end{cases}$$

Example: $P(X) = N(\mu, \sigma^2)$

Proposal Dist. $T(x \rightarrow x') = N(x, 0.2^2)$

$$P(accept \ from \ x \ to \ x') = \begin{cases} 1, & if \ |x' - \mu| < |x - \mu| \\ \frac{N(x'; \mu, \sigma^2)}{N(x; \mu, \sigma^2)}, & o.w. \end{cases}$$

$$(T(x \rightarrow x') = T(x' \rightarrow x) \text{ this } case.)$$

(red: Reject)

(green: Accept)

Example: Structure Posterior = P(G|Data)

Proposal Distribution:

$$T(G \rightarrow G')$$

= P(add/remove a randomly chosen edge of G => G')

$$P(accept \ from \ G \ to \ G') = \begin{cases} 1 \ , \ if \ P(\text{Data} \mid G') < P(\text{Data} \mid G) \\ \\ \frac{P(\text{Data} \mid G')}{P(\text{Data} \mid G)} \ , \ o.w. \end{cases}$$

$$(T(G \rightarrow G') = T(G' \rightarrow G) \text{ this } case.)$$

Why Metropolis-Hasting has $\pi_T = P(X)$?

Detailed-Balance Sufficient Condition:

If
$$\pi_T(x')^*T(x' \rightarrow x) = \pi_T(x)^*T(x \rightarrow x')$$
, then $\pi_T(x)$ is stationary under T.

Given desired $\pi_T(x)=P(X)$, and a **Proposal dist.** $T(x\rightarrow x')$, we can let **Detailed Balance** satisfied using **accept prob.** $A(x\rightarrow x')$:

Assume
$$P(x')T(x' \rightarrow x) < P(x)T(x \rightarrow x')$$
, then:

We know
$$P(x')T(x' \to x) *1 = P(x)T(x \to x') * \frac{P(x')T(x' \to x)}{P(x)T(x \to x')}$$

$$define \ \ A(x \to x') = \begin{cases} 1, & P(x')T(x' \to x) > P(x)T(x \to x') \\ P(x')T(x' \to x) \\ \hline P(x)T(x \to x') \end{cases}, \ o.w. \qquad \pi_{\mathsf{T}}(\mathsf{x}) \tag{X} \qquad \pi_{\mathsf{T}}(\mathsf{x}' \to \mathsf{x}) \end{cases} \pi_{\mathsf{T}}(\mathsf{x}' \to \mathsf{x}')$$

How to Collect Samples?

Assume we want collecting N samples:

Run N times of MCMC and collect their Mth samples.

2. Run 1 time of MCMC and collect $(M+1)^{th} \sim (M+N)^{th}$ samples.

What's the difference ??

How to Collect Samples?

Assume we want collecting N samples:

Run N times of MCMC and collect their Mth samples.

2. Run 1 time of MCMC and collect $(M+1)^{th} \sim (M+N)^{th}$ samples.

Comparison

$$E[\hat{f}] = E[\frac{1}{N} \sum_{n=1}^{N} f(X^{(n)})] = \frac{1}{N} E[\sum_{n=1}^{N} f(X^{(n)})] = \frac{1}{N} \sum_{n=1}^{N} E[f(X^{(n)})] = E[f(X)]$$

No Independent Assumption Used

Unbiased Estimator in both cases.

For simple analysis, Take N=2:

$$Var[\hat{f}] = Var[\frac{1}{2}(f(X^{(1)}) + f(X^{(2)})]$$

$$= \frac{1}{4}(Var[f(X^{(1)})] + Var[f(X^{(2)})]) = \frac{Var[f(X)]}{2}$$

For simple analysis, Take N=2:
$$Var[\hat{f}] = Var[\frac{1}{2}(f(X^{(1)}) + f(X^{(2)})]$$

$$= \frac{1}{4}(Var[f(X^{(1)})] + Var[f(X^{(2)})]) = \frac{Var[f(X)]}{2}$$

$$= \frac{Var[f(X)]}{2} + \rho_{f(X^{(1)}),f(X^{(2)})} * \frac{Var[f(X)]}{2} > \frac{Var[f(X)]}{2}$$

Practically, many correlated samples (right) outperforms few independent samples (left).

How to Check Convergence?

Check Ratio =
$$\sqrt{\frac{B}{W}}$$
 close to 1 enough. (assume K MCs, each with N samples.) $\bar{f} = \frac{1}{K} \sum_{k=1}^{K} \bar{f}_k$

$$B = Var. between MC = \frac{N}{K-1} \sum_{k=1}^{K} (\bar{f}_k - \bar{f})^2 \qquad W = Var. within MC = \frac{1}{K(N-1)} \sum_{k=1}^{K} \sum_{n=1}^{N} (f(X^{(k,n)}) - \bar{f}_k)^2$$

The Critical Problem of MCMC

When $\rho \rightarrow 1$, $M \rightarrow \infty$, Var[.] not decreasing with N

→ MCMC cannot yield acceptable result in reasonable time.

Taking very large M to converge to π_T .

How to Reduce Correlation (ρ) among Samples?

Taking Large Step in Sample Space:

Block Gibbs Sampling

Collapsed-Particle Sampling

Problem of Gibbs Sampling

Correlation (ρ) between samples is high, when correlation among variables $X_1 \sim X_K$ is high.

Taking very large M to converge to π_T .

Draw "block" of variables jointly: P(X,Y)=P(X)P(Y|X)

Converge to $\pi_{\!\scriptscriptstyle T}$ much quickly.

Divide X into several "tractable blocks" X_1 , X_2 , ..., X_B . Each block X_b can be drawn jointly given variables in other blocks.

Divide X into several "tractable blocks" X_1 , X_2 , ..., X_B . Each block X_b can be drawn jointly given variables in other blocks.

Divide **X** into several "tractable blocks" X_1 , X_2 , ..., X_B . Each block X_b can be drawn jointly given variables in other blocks.

Divide **X** into several "tractable blocks" X_1 , X_2 , ..., X_B . Each block X_b can be drawn jointly given variables in other blocks.

Divide **X** into several "tractable blocks" X_1 , X_2 , ..., X_B . Each block X_b can be drawn jointly given variables in other blocks.

Drawing from a block X_b jointly may need 1 pass of VE.

Draw E from: f(D=d,E)

Drawing from a block X_b jointly may need 1 pass of VE.

Draw E from: f(D=d,E)

Agenda

- When to use Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

Collapsed Particle

Exact:
$$E_{P(X)}[f(X)] = \sum_{X} P(X) * f(X)$$

Particle-Based:
$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} f(X^{(n)})$$

Collapsed-Particle:

Divide X into 2 parts $\{X_p, X_d\}$, where X_d can do inference given X_p

$$\begin{split} E_{P(X)}[f(X)] &= \sum_{X} P(X) * f(X) = \sum_{Xp} P(X_p) \sum_{Xd} P(X_d \mid X_p) * f(X) \\ \hat{E}_{P(X)}[f(X)] &= \frac{1}{N} \sum_{n=1}^{N} \left(\sum_{Xd} P(X_d \mid X_p^{(n)}) f(X_d, X_p^{(n)}) \right) \end{split}$$

(If X_p contains few variables, Var. can be much reduced !!)

Collapsed Particle with VE

To draw X_k, **Given** all other variables in **Xp sum out** all other variables in **Xd**

Draw S (given KC=k & T=t) from:

$$M(S)=$$

 $\sum_{K1.K2} F(S,KC=k,K1,K2) M(K1,T1=t1) M(S,KC=k,K2)$

f(T3)

Collapsed Particle with VE

To draw X_k, **Given** all other variables in **Xp sum out** all other variables in **Xd**

f(T3)

Draw KC (given S=s & T=t) from:

$$M(KC)=$$

$$\sum_{K1,K2} F(S=s,KC,K1,K2) M(K1,T1=t1) M(S=s,KC,K2)$$

Collapsed Particle with VE

To draw X_k, **Given** all other variables in **Xp sum out** all other variables in **Xd**

Draw T1 (given S=s & KC=k) from:

 $M(T1) = \sum_{K1} M(K1,S=s,KC=k) F(K1,T1)$

Collect Samples

Xp(S, KC, T1, T2, T3)

(K1, K2, K3)

(Intel, Quick, Hard, Easy, Hard) ({1/3,1/3,1/3}, {1/4,1/4,1/2}, {1/2,1/2,0}) (Intel, Slow, Easy, Easy, Hard) ({1/2,1/2,1/4}, {1/5,4/5,0}, {1/4,1/4,1/2})

····

(Dull, Slow, Easy, Easy, Hard) $(\{1/3,1/3,1/3\},\{1/4,1/4,1/2\},\{1/2,1/2,0\})$

Average Average

$$\hat{E}_{P(X)}[f(X)] = \frac{1}{N} \sum_{n=1}^{N} \left(\sum_{Xd} P(X_d \mid X_p^{(n)}) f(X_d, X_p^{(n)}) \right)$$