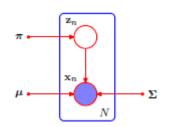
# Particle-Based Approximate Inference on Graphical Model

#### Reference:

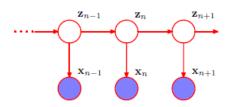
Probabilistic Graphical Model Ch. 12 (Koller & Friedman) CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 18,19 (Eric Xing) Pattern Recognition & Machine Learning Ch. 11. (Bishop)

## In terms of difficulty, there are 3 types of inference problem.

• Inference which is easily solved with Bayes rule.



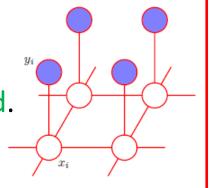
 Inference which is tractable using some dynamic programming technique.



(e.g. Variable Elimination or J-tree algorithm)

#### Today's focus

Inference which is proved intractable
 & should be solved using some Approximate Method.
 (e.g. Approximation with Optimization or Sampling technique.) -



#### Agenda

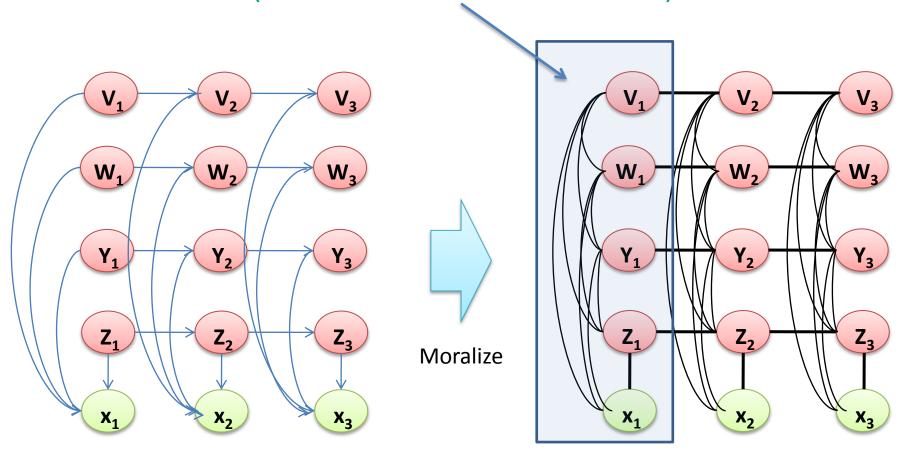
- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

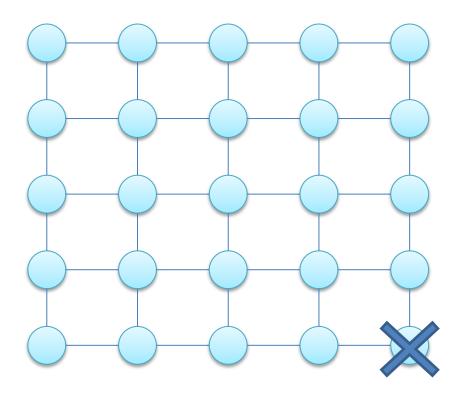
## Agenda

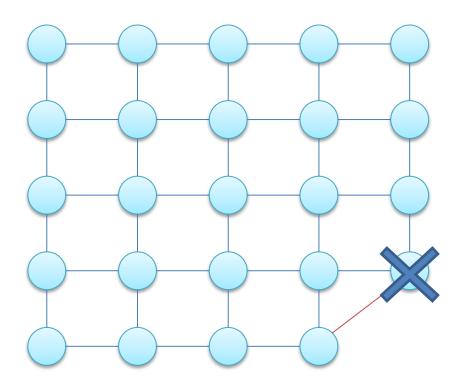
- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

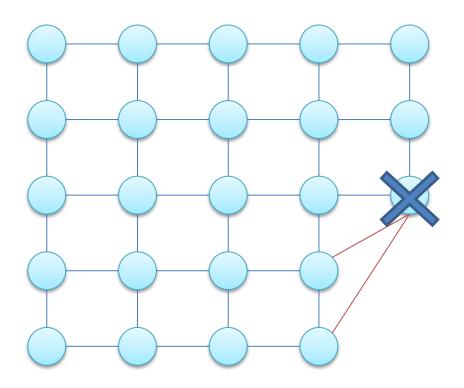
### **Example: General Factorial HMM**

A clique size=5, intractable most of times. (No tractable elimination exist...)



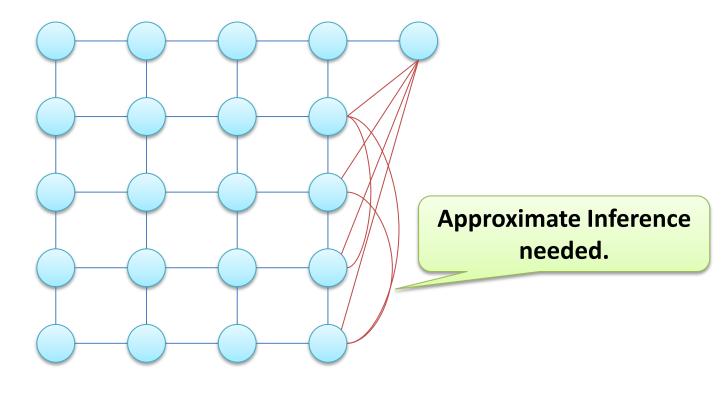








Example: A Grid MRF



Generally, we will have clique of "size N" for a N\*N grid, which is indeed intractable.

## General idea of Particle-Based (Monte Carlo) Approximation

Most of Queries we want can be formed as:

Intractable when  $K \rightarrow \infty$ .

$$E_{P(X)}[f(X)] = \sum_{X_1} ... \sum_{X_K} P(X_1 ... X_K) * f(X_1 ... X_K)$$

which is intractable most of time. Assume we can generate i.i.d. samples  $X^{(1)}...X^{(n)}$  from P(X), we can approximate above using:

$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} f(X^{(n)})$$

It's a unbiased estimator whose variance converges to 0 when  $N \rightarrow \infty$ .

$$E[\hat{f}] = \frac{1}{N} E[\sum_{n=1}^{N} f(X^{(n)})] = E[f(X)]$$

$$Var[\hat{f}] = \frac{1}{N^{2}} Var[\sum_{n=1}^{N} f(X^{(n)})] = \frac{1}{N} Var[f(X)]$$

Var. not Related to dimension of X.
Var→0 as N→∞

## Which Problem can use Particle-Based (Monte Carlo) Approximation?

#### Type of queries:

- 1. Likelihood of evidence/assignments on variables
- 2. Conditional Probability of some variables (given others).
- 3. Most Probable Assignment for some variables (given others ).

#### Problem which can be written as following form:

$$E_{P(X)}[f(X)] = \sum_{X_1} ... \sum_{X_K} P(X_1 ... X_K) * f(X_1 ... X_K)$$

#### **Marginal Distribution (Monte Carlo)**

To Compute Marginal Distribution on X<sub>k</sub>

$$\begin{split} &P(X_{k} = x_{k}) \\ &= \sum_{X_{-k}} P(X_{k} = x_{k}, X_{-k}) = \sum_{X_{k}} \sum_{X_{-k}} P(X_{k}, X_{-k}) * 1\{X_{k} = x_{k}\} \\ &= E_{P(X)}[1\{X_{k} = x_{k}\}] \end{split}$$

#### **Particle-Based Approximation:**

$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} 1\{X_k^{(n)} = x_k\}$$

(Just count the proportion of samples in which  $X_k = x_k$ )

### **Marginal Joint Distribution (Monte Carlo)**

To Compute Marginal Distribution on (X<sub>i</sub>, X<sub>i</sub>)

$$\begin{split} &P(X_{i} = x_{i}, X_{j} = x_{j}) \\ &= \sum_{X_{-ij}} P(X_{i} = x_{i}, X_{j} = x_{j}, X_{-ij}) = \sum_{X_{-ij}} \sum_{X_{i}} \sum_{X_{j}} P(X_{i}, X_{j}, X_{-k}) * 1\{X_{i} = x_{i} & X_{j} = x_{j}\} \\ &= E_{P(X)} [1\{X_{i} = x_{i} & X_{j} = x_{j}\}] \end{split}$$

#### **Particle-Based Approximation:**

$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} 1\{X_i^{(n)} = X_i, X_j^{(n)} = X_j\}$$

( Just count the proportion of samples in which  $X_i=x_i \& X_j=x_j$ )

#### So What's the Problem?

Note what we can do is:

"Evaluate" the probability/likelihood  $P(X_1=x_1,...,X_K=x_K)$ .

What we **cannot** do is:

**Summation / Integration** in high-dim. space:  $\sum_{X} P(X_1,...,X_K)$ .

What we want to do (for approximation) is:

"Draw" samples from  $P(X_1,...,X_K)$ .

How to make better use of samples?

How to know we've sampled enough?

## How to draw Samples from P(X)?

#### Forward Sampling

draw from ancestor to descendant in BN.

#### Rejection Sampling

create samples using Forward Sampling, and reject those inconsistent with evidence.

#### Importance Sampling

Sample from proposal dist. Q(X), but give large weight on sample with high likelihood in P(X).

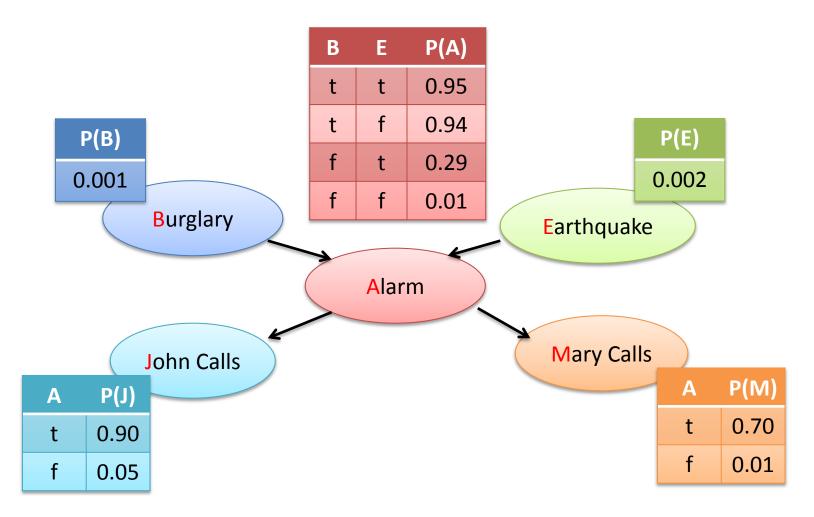
#### Markov Chain Monte Carlo

Define a Transition Dist.  $T(x \rightarrow x')$  s.t. samples can get closer and closer to P(X).

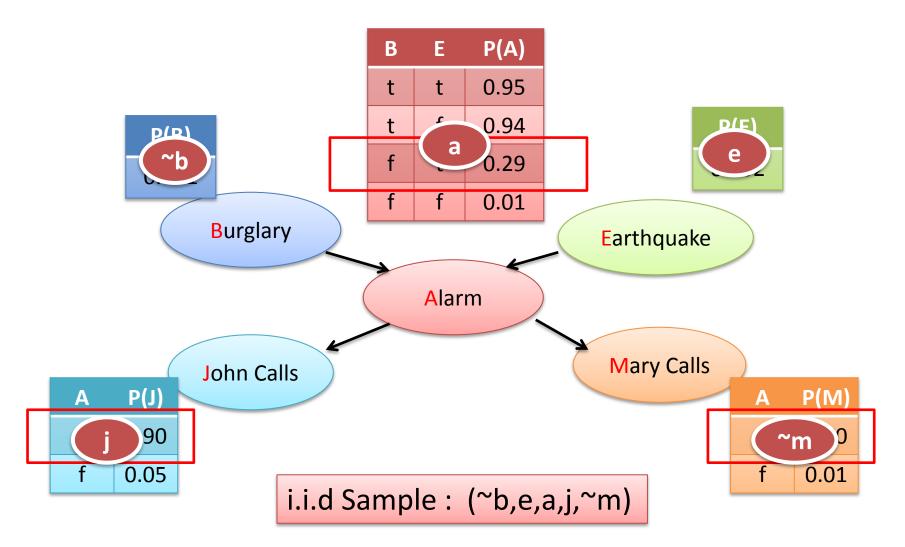
#### Agenda

- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

## Forward Sampling



### Forward Sampling



### **Forward Sampling**

Particle-Based Represent of the joint distribution P(B,E,A,J,M).

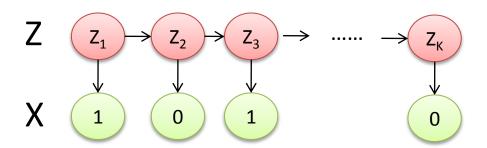
$$P(M = m) = \frac{1}{N} \sum_{n=1}^{N} 1\{M^{(n)} = m\}$$

$$P(B = b, M = \sim m) = \frac{1}{N} \sum_{n=1}^{N} 1\{B^{(n)} = b, M^{(n)} = \sim m\}$$

What if we want samples from P( $B, E, A \mid J=j, M=^m$ )?

- 1. Collect all samples in which J=j , M=~m .
- 2. Those samples form the particle-based representation of  $P(B, E, A \mid J=j, M=^m)$ .

## Forward Sampling from P(Z|Data)?



- 1. Forward Sampling N times.
- 2. Collect all samples  $(Z^{(n)}, X^{(n)})$  in which  $X_1=1, X_2=0, X_3=1, ..... X_K=0$ .
- 3. Those samples form the particle-based representation of P(Z|X).

How many such samples can we get ??

→ N\*P(Data) !! (Less than 1 if N not large enough.....)

Solutions.....

### Importance Sampling to the Rescue

#### We need not draw from P(X) to compute $E_{P(X)}[f(X)]$ :

$$E_{P(X)}[f(X)] = \sum_{X} P(X) * f(X)$$

$$= \sum_{X} Q(X) * (\frac{P(X)}{Q(X)} * f(X)) = E_{Q(X)}[\frac{P(X)}{Q(X)} * f(X)]$$

$$\hat{E}_{P(X)}[f(X)] = \frac{1}{N} \sum_{n=1}^{N} \left( \frac{P(X^{(n)})}{Q(X^{(n)})} \right) * f(X^{(n)})$$

That is, we can draw from an arbitrary distribution Q(X), but give larger weights on samples having higher probability under P(X).

## Importance Sampling to the Rescue

## Sometimes we can only evaluate an unnormalized distribution : $\approx \infty$

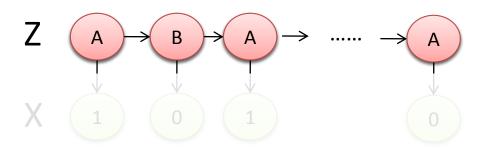
$$\widetilde{P}(X)$$
, where  $\frac{\widetilde{P}(X)}{Z} = P(X)$ 

#### Then we can estimate Z as follows:

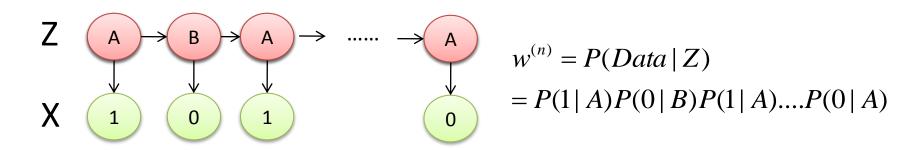
$$Z = \sum_{X} \widetilde{P}(X) = \sum_{X} Q(X) \frac{\widetilde{P}(X)}{Q(X)} = E_{Q(X)} \left[ \frac{\widetilde{P}(X)}{Q(X)} \right] \qquad \qquad \hat{Z} = \frac{1}{N} \sum_{n=1}^{N} \frac{\widetilde{P}(X^{(n)})}{Q(X^{(n)})}$$

Note that we can compute  $\hat{Z}$  only if we can evaluate a **normalized distribution** Q(X) , that is, we have  $Z_Q$  or Q(X) is from a BN.

$$E_{P(X)}[f(X)] = \frac{1}{Z} E_{Q(X)} \left[ \frac{\tilde{P}(X)}{Q(X)} * f(X) \right] \qquad \hat{E}_{P(X)}[f(X)] = \frac{\hat{E}_{\tilde{P}(X)}[f(X)]}{\hat{Z}} = \frac{\sum_{n=1}^{N} \frac{\tilde{P}(X^{(n)})}{Q(X^{(n)})} * f(X^{(n)})}{\sum_{n=1}^{N} \frac{\tilde{P}(X^{(n)})}{Q(X^{(n)})}}$$

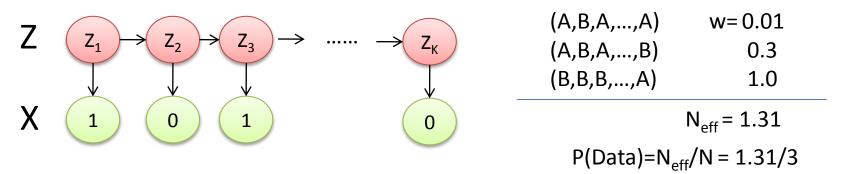


 Sampling from P(Z), a normalized distribution obtained from BN truncating the part with evidence.



- 1. Sampling from P(Z), a normalized distribution obtained from BN truncating the part with evidence.
- 2. Give each sample (Z(n), X(n)) a weight:

$$w^{(n)} = \frac{\widetilde{P}(Z)}{Q(Z)} = \frac{P(Z)P(Data \mid Z)}{P(Z)} = P(Data \mid Z)$$

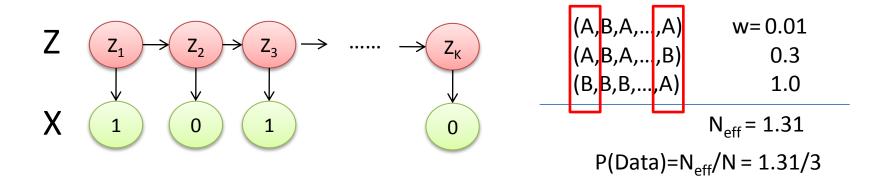


- Sampling from P(Z), a normalized distribution obtained from BN truncating the part with evidence.
- 2. Give each sample (Z(n), X(n)) a weight:

$$w^{(n)} = \frac{\widetilde{P}(Z)}{Q(Z)} = \frac{P(Z)P(Data \mid Z)}{P(Z)} = P(Data \mid Z)$$

3. The effective number of samples is  $N_{eff} = \sum_{n=1}^{N} w^{(n)}$ 

$$(\hat{P}(Data) = \frac{1}{N} \sum_{n=1}^{N} w^{(n)} = \frac{1}{N} \sum_{n=1}^{N} P(Data \mid Z^{(n)}))$$



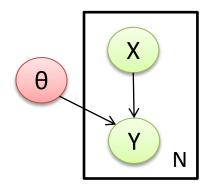
To get estimate of  $P(Z_1 | Data)$ :

$$\hat{P}(Z_1 = B \mid Data) = \frac{0.01*0 + 0.3*0 + 1.0*1}{1.31} = 0.76$$

$$\hat{P}(Z_1 = A, Z_K = B \mid Data) = \frac{0.01 \cdot 0 + 0.3 \cdot 1 + 1.0 \cdot 0}{1.31} = 0.23$$

Any joint dist. can be estimated. (No "out of clique" problem)

## Bayesian Treatment with Importance Sampling



Ex. 
$$P_{\theta}(Y=1|X) = \text{logistic}(\theta_1^*X + \theta_0)$$

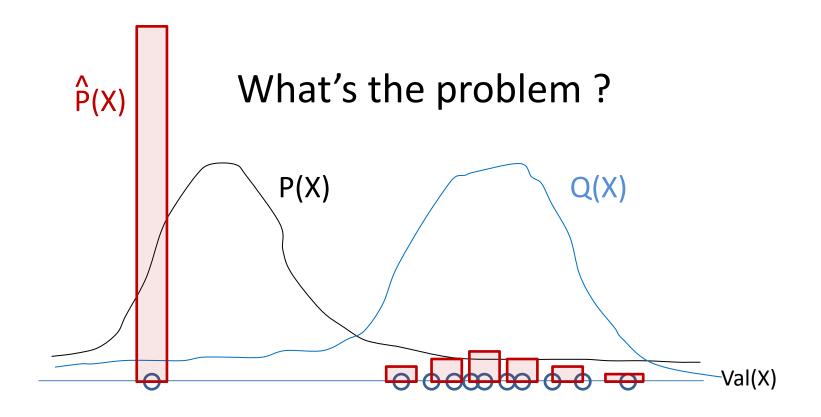
Often, Posterior on parameters  $\theta$ :

$$P(\theta \mid Data) = \frac{P(Data \mid \theta)P(\theta)}{P(Data)} = \frac{P(Data \mid \theta)P(\theta)}{\int_{\alpha} P(Data \mid \theta)P(\theta) \ d\theta}$$

is **intractable** because many types of  $P_{\theta}$ (Data  $| \theta$ ) cannot be integrated analytically.

**Approximate** with: 
$$\hat{P}(\theta = a \mid Data) = \frac{\sum_{n=1}^{N} P(Data \mid \theta^{(n)} = a) \ 1\{\theta^{(n)} = a\}}{\sum_{n=1}^{N} P(Data \mid \theta^{(n)})} = \frac{P(Data \mid \theta = a) \sum_{n=1}^{N} 1\{\theta^{(n)} = a\}}{\hat{P}(Data)}$$

We need not evaluate "the integration" to estimate  $P(\theta | Data)$  using Importance Sampling.



#### If P(X) and Q(X) not matched properly......

Only small number of samples will fall in the region with high P(X).

→ Very large N needed to get a good picture of P(X).

### How P(Z|X) and Q(Z) Match?

When evidence is close to root, forward sampling is a good Q(Z), which can generate samples with high likelihood in P(Z|X).

mples with Evidence X).

Q(Z) close to P(Z|X)

### How P(Z|X) and Q(Z) Match?

When evidence is on the leaves, forward sampling is a bad Q(Z), yields very low likelihood=P(X|Z).

So we need very large sample size to get a good picture of P(Z|X).

**Evidence** 

Q(Z) far from P(Z|X)

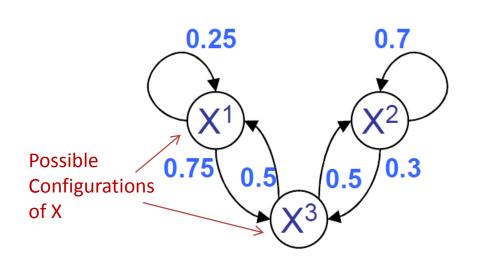
Can we **improve with time** to draw from a distribution more like the desired P(Z|X)?

→ MCMC try to draw from a distribution closer and closer to P(Z|X).
(Apply equally well in BN & MRF.)

### Agenda

- When to use Particle-Based Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

## What is Markov Chain (MC)?



A set of Random Variables:

$$\mathbf{X} = (X_1, \dots, X_K)$$

Variables change with Time:

$$\mathbf{X}^{(t)} = (\mathbf{X}_1^{(t)}, \dots, \mathbf{X}_K^{(t)})$$

which take transition following:

$$P(\mathbf{X^{(t+1)}} = \mathbf{x'} \mid \mathbf{X^{(t)}} = \mathbf{x}) = T(\mathbf{x} \rightarrow \mathbf{x'})$$

There is a stationary distribution  $\pi_{\mathsf{T}}(\mathsf{X})$  for Transition T, in which:

$$\pi_T(X=x') = \sum_x \pi_T(X=x) * T(x \rightarrow x')$$

(After transition, still the same distribution over all possible configurations X<sup>1</sup>~X<sup>3</sup>)

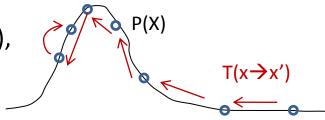
Ex. The MC (Markov Chain) above has only 1 variable X taking on values  $\{x^1, x^2, x^3\}$ ,

There is a 
$$\pi_T$$
 s.t.  $\pi_T * T = \begin{bmatrix} 0.2 & 0.5 & 0.3 \end{bmatrix} \begin{bmatrix} 0.25 & 0 & 0.75 \\ 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.5 & 0.3 \end{bmatrix} = \pi_T$ 

## What is MCMC (Markov Chain Monte Carlo)?

Importance Sampling is efficient only if Q(X) matches P(X) well. Finding such Q(X) is difficult.

Instead, MCMC tries to find a transition dist.  $T(x \rightarrow x')$ , s.t. **X tends to transit into states with high P(X)**, and finally follows stationary dist.  $\pi_T = P(X)$ .



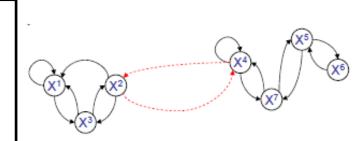
Setting  $X^{(0)}$ =any initial value, we samples  $X^{(1)}, X^{(2)}, \dots, X^{(M)}$  following  $T(x \rightarrow x')$ , and hope that  $X^{(M)}$  follows stationary distribution  $\pi_T = P(X)$ .

If  $X^{(M)}$  really does, we got a sample  $X^{(M)}$  from P(X).

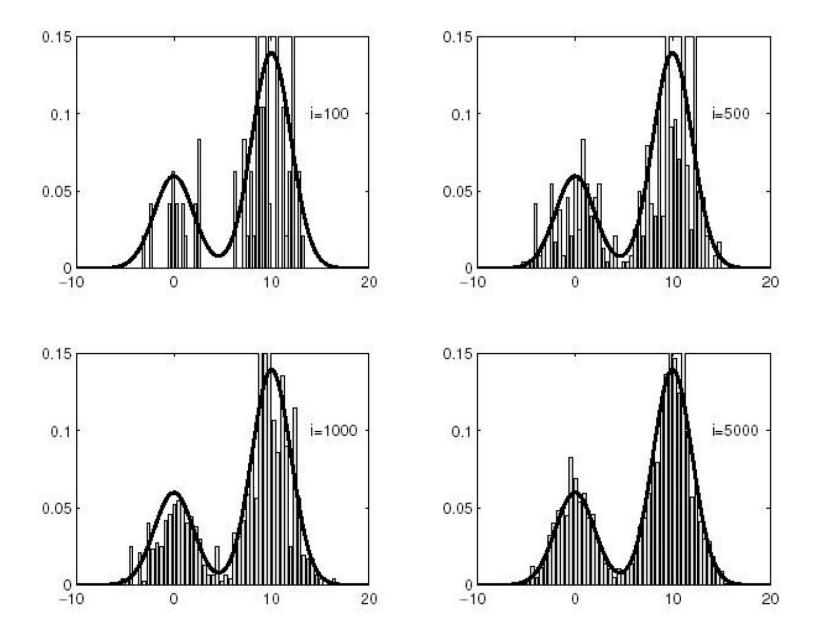
Why will the MC **converge to stationary distribution**? there is a simple, useful **sufficient** condition:

"Regular " Markov Chain: (for finite state space)
Any state x can reach any other states x' with prob. > 0.
(all entries of Potential/CPD > 0)

 $\rightarrow$  X<sup>(M)</sup> follows a unique  $\pi_{\tau}$  as M large enough.



## **Example Result**



## How to define $T(x \rightarrow x')$ ? ---- Gibbs Sampling

**Gibbs Sampling** is the most popular one used in Graphical Model. In graphical model :

It is easy to draw sample from "each individual variable given others  $P(X_k | X_{-k})$ ", while drawing from the joint dist. of  $(X_1, X_2, ..., X_K)$  is difficult.

So, we define  $T(X \rightarrow X')$  in Gibbs-Sampling as :

Taking transition of  $X_1 \sim X_K$  in turn with transition distribution :

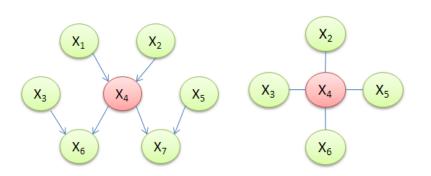
$$T_1(x_1 \rightarrow x_1'), T_2(x_2 \rightarrow x_2'), \dots, T_K(x_K \rightarrow x_K')$$

Where

$$T_k(x_k \rightarrow x_k') = P(X_k = x_k' \mid X_{-k})$$
 (Redraw  $X_k \sim$  conditional dist. given all others.)

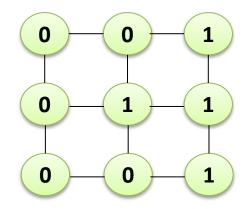
In a Graphical Model,

$$P(X_k=x_k'|X_{-k}) = P(X_k=x_k'|Markov Blanket(X_k))$$



#### Gibbs Sampling:

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X<sub>t</sub> from P( X | N(X)<sub>t-1</sub> ).
 end
 end

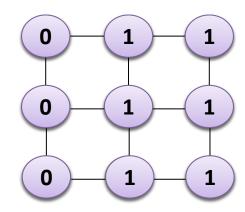


$$P(|X = 1| N(X)) = \frac{\prod_{Y \in N(X)} \phi(X = 1, Y)}{\prod_{Y \in N(X)} \phi(X = 1, Y) + \prod_{Y \in N(X)} \phi(X = 0, Y)}$$

| ф(X,Y) | 0 | 1 |
|--------|---|---|
| 0      | 5 | 1 |
| 1      | 1 | 9 |

#### Gibbs Sampling:

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X<sub>t</sub> from P( X | N(X)<sub>t-1</sub> ).
 end



$$P(|X = 1| N(X)) = \frac{\prod_{Y \in N(X)} \phi(X = 1, Y)}{\prod_{Y \in N(X)} \phi(X = 1, Y) + \prod_{Y \in N(X)} \phi(X = 0, Y)}$$

For the central node:

end

$$P(X=1|N(X)) = \frac{1*9*9*1}{1*9*9*1+5*1*1*5} = 0.76$$

ф(Х,Ү)

)

1

9

0

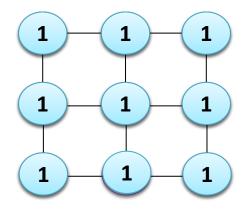
5

1

1

#### Gibbs Sampling:

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X<sub>t</sub> from P( X | N(X)<sub>t-1</sub> ).
 end



$$P(|X = 1| N(X)) = \frac{\prod_{Y \in N(X)} \phi(X = 1, Y)}{\prod_{Y \in N(X)} \phi(X = 1, Y) + \prod_{Y \in N(X)} \phi(X = 0, Y)}$$

For the central node:

$$P(X=1|N(X)) = \frac{9*9*9*9}{9*9*9*9+1*1*1*1} = 0.99$$

ф(X,Y)

)

1

 $\mathbf{0}$ 

5

1

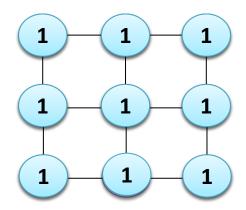
1 9

#### Gibbs Sampling:

end

Initialize all variables randomly.
 for t = 1~M
 for every variable X
 2. Draw X<sub>t</sub> from P( X | N(X)<sub>t-1</sub> ).
 end

t=3



When M is large enough, X(M) follows stationary dist. :

$$\pi_T(X) = P(X) = \frac{1}{Z} \prod_C \phi(X_C)$$

(Regularity: All entries in the Potential are positive.)

| ф | (X, | Y) |  |
|---|-----|----|--|
|   |     |    |  |

0



5 1

1

1 9

# Why Gibbs Sampling has $\pi_T = P(X)$ ?

To prove P(X) is the stationary distribution, we prove P(X) is invariant under  $T_k(x_k \rightarrow x_k')$ :

Assume  $(X_1,...,X_K)$  currently follows  $P(X) = P(X_k | X_{-k}) * P(X_{-k})$ ,

- 1. After  $T_k(x_k \rightarrow x_k')$ ,  $X_{-K}$  still follows  $P(X_{-k})$  because they are unchanged.
- 2. After  $T_k(x_k \rightarrow x_k') = P(X_k = x_k' \mid X_{-k})$  (new state indep. from current value  $x_k$ )  $\rightarrow X_k(t)$  still follows  $P(X_k \mid X_{-k})$ .

So, after  $T_1(x_1 \rightarrow x_1')$ , .....,  $T_1(x_K \rightarrow x_K')$ ,  $X=(X_1,...,X_K)$  still follows P(X).

( Uniqueness & Convergence guaranteed from Regularity of MC. )

#### Gibbs Sampling not Always Work

When drawing from individual variable is not possible:

( We can evaluate P(Y|X) but not P(X|Y). )

#### **Non-linear Dependency:**

$$P(Y | X) = N(w_0 + w_1 X + w_2 X^2, \sigma^2)$$

$$P(Y | X) = \log i stic (w_0 + w_1 X_1)$$

$$P(Y | X) = N(\sum_{n=1}^{N} K(X, X^{(n)}), \sigma^2) \text{ (ker nel trick)}$$

$$P(X | Y) = \frac{P(Y | X)P(X)}{\int_X P(Y | X)P(X) dX}$$

$$P(Y | X) = N(\sum_{n=1}^{N} K(X, X^{(n)}), \sigma^2) \text{ (ker nel trick)}$$

**Large State Space:** (In Structure Learning, statespace =  $G_1, G_2, G_3....$ )

$$P(G \mid Data) = \frac{P(Data \mid G)P(G)}{\sum_{G} P(Data \mid G)P(G)}$$

(Too large state space to do summation)

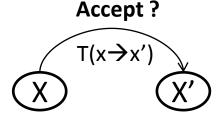
Other MCMC like **Metropolis-Hasting** needed. (see reference.)

#### Metropolis-Hasting ---- MCMC

Metropolis-Hasting (M-H) is a general MCMC method to sample P(X|Y) whenever we can evaluate P(Y|X). ( evaluation of P(X|Y) not needed )

In M-H, instead of drawing from P(X|Y), we draw from another **Proposal Dist.**  $T(x \rightarrow x')$  based on current sample x, and **Accept the Proposal** with probability:

$$P(accept \ from \ x \ to \ x') = \begin{cases} 1 &, \ if \ P(x')T(x' \to x) > P(x)T(x \to x') \\ \frac{P(x')T(x' \to x)}{P(x)T(x \to x')} &, \ o.w. \end{cases}$$

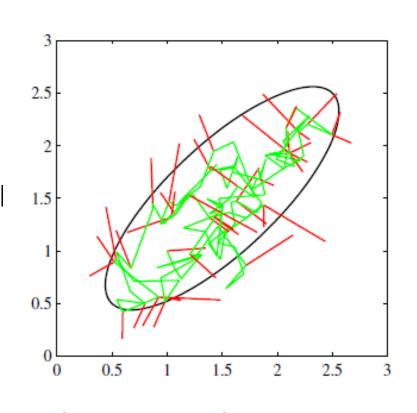


# Example: $P(X) = N(\mu, \sigma^2)$

Proposal Dist.  $T(x \rightarrow x') = N(x, 0.2^2)$ 

$$P(accept \ from \ x \ to \ x') = \begin{cases} 1, & if \ |x' - \mu| < |x - \mu| \\ \frac{N(x'; \mu, \sigma^2)}{N(x; \mu, \sigma^2)}, & o.w. \end{cases}$$

$$(T(x \rightarrow x') = T(x' \rightarrow x) \text{ this } case.)$$



(red: Reject)

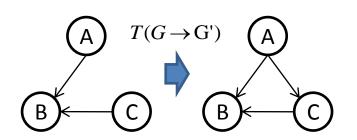
(green: Accept)

## Example: Structure Posterior = P(G|Data)

#### **Proposal Distribution:**

$$T(G \rightarrow G')$$

= P(add/remove a randomly chosen edge of G => G')



$$P(accept \ from \ G \ to \ G') = \begin{cases} 1 \ , \ if \ P(\text{Data} \mid G') < P(\text{Data} \mid G) \\ \\ \frac{P(\text{Data} \mid G')}{P(\text{Data} \mid G)} \ , \ o.w. \end{cases}$$

$$(T(G \rightarrow G') = T(G' \rightarrow G) \text{ this } case.)$$

# Why Metropolis-Hasting has $\pi_T = P(X)$ ?

#### **Detailed-Balance Sufficient Condition:**

If 
$$\pi_T(x')^*T(x' \rightarrow x) = \pi_T(x)^*T(x \rightarrow x')$$
, then  $\pi_T(x)$  is stationary under T.

Given desired  $\pi_T(x)=P(X)$ , and a **Proposal dist.**  $T(x\rightarrow x')$ , we can let **Detailed Balance** satisfied using **accept prob.**  $A(x\rightarrow x')$ :

Assume 
$$P(x')T(x' \rightarrow x) < P(x)T(x \rightarrow x')$$
, then:

We know 
$$P(x')T(x' \to x) *1 = P(x)T(x \to x') * \frac{P(x')T(x' \to x)}{P(x)T(x \to x')}$$

$$define \ \ A(x \to x') = \begin{cases} 1, & P(x')T(x' \to x) > P(x)T(x \to x') \\ P(x')T(x' \to x) \\ \hline P(x)T(x \to x') \end{cases}, \ o.w. \qquad \pi_{\mathsf{T}}(\mathsf{x}) \tag{X} \qquad \pi_{\mathsf{T}}(\mathsf{x}' \to \mathsf{x}) \end{cases} \pi_{\mathsf{T}}(\mathsf{x}' \to \mathsf{x}')$$

#### How to Collect Samples?

Assume we want collecting N samples:

Run N times of MCMC and collect their M<sup>th</sup> samples.



2. Run 1 time of MCMC and collect  $(M+1)^{th} \sim (M+N)^{th}$  samples.

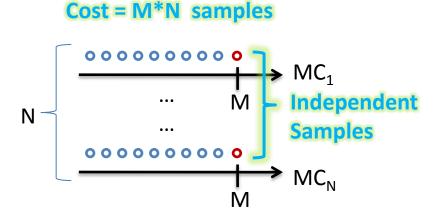


#### What's the difference ??

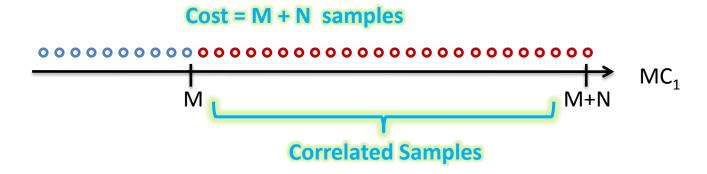
#### How to Collect Samples?

Assume we want collecting N samples:

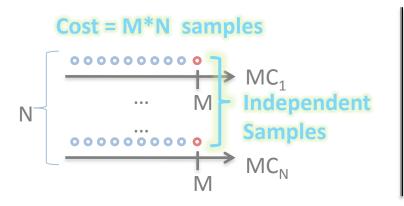
Run N times of MCMC and collect their M<sup>th</sup> samples.

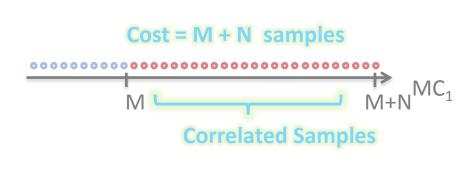


2. Run 1 time of MCMC and collect  $(M+1)^{th} \sim (M+N)^{th}$  samples.



#### Comparison





$$E[\hat{f}] = E[\frac{1}{N} \sum_{n=1}^{N} f(X^{(n)})] = \frac{1}{N} E[\sum_{n=1}^{N} f(X^{(n)})] = \frac{1}{N} \sum_{n=1}^{N} E[f(X^{(n)})] = E[f(X)]$$

No Independent Assumption Used 

Unbiased Estimator in both cases.

#### For simple analysis, Take N=2:

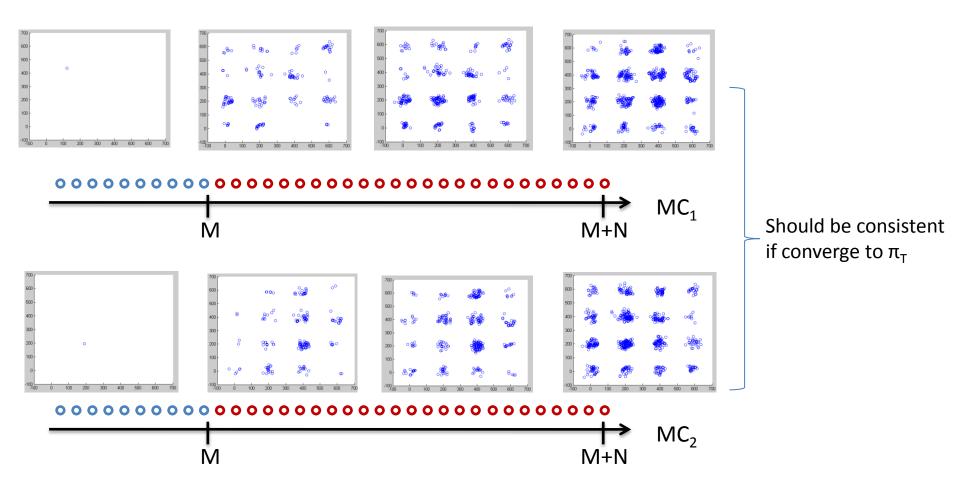
$$Var[\hat{f}] = Var[\frac{1}{2}(f(X^{(1)}) + f(X^{(2)})]$$

$$= \frac{1}{4}(Var[f(X^{(1)})] + Var[f(X^{(2)})]) = \frac{Var[f(X)]}{2}$$

For simple analysis, Take N=2: 
$$Var[\hat{f}] = Var[\frac{1}{2}(f(X^{(1)}) + f(X^{(2)})]$$
 
$$= \frac{1}{4}(Var[f(X^{(1)})] + Var[f(X^{(2)})]) = \frac{Var[f(X)]}{2}$$
 
$$= \frac{Var[f(X)]}{2} + \rho_{f(X^{(1)}),f(X^{(2)})} * \frac{Var[f(X)]}{2} > \frac{Var[f(X)]}{2}$$

Practically, many correlated samples (right) outperforms few independent samples (left).

#### How to Check Convergence?



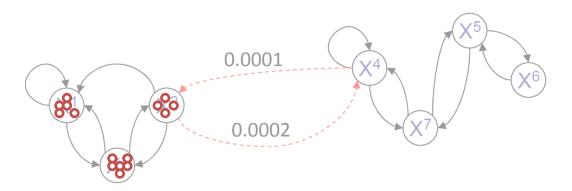
Check Ratio = 
$$\sqrt{\frac{B}{W}}$$
 close to 1 enough. (assume K MCs, each with N samples.)  $\bar{f} = \frac{1}{K} \sum_{k=1}^{K} \bar{f}_k$ 

$$B = Var. between MC = \frac{N}{K-1} \sum_{k=1}^{K} (\bar{f}_k - \bar{f})^2 \qquad W = Var. within MC = \frac{1}{K(N-1)} \sum_{k=1}^{K} \sum_{n=1}^{N} (f(X^{(k,n)}) - \bar{f}_k)^2$$

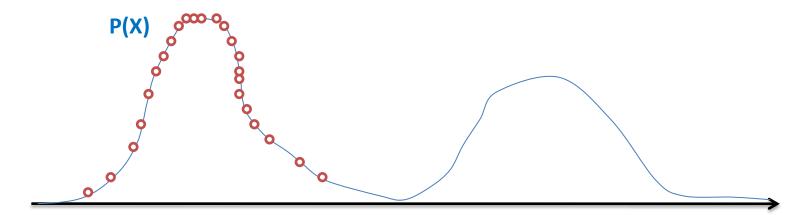
#### The Critical Problem of MCMC

When  $\rho \rightarrow 1$ ,  $M \rightarrow \infty$ , Var[.] not decreasing with N

→ MCMC cannot yield acceptable result in reasonable time.



Taking very large M to converge to  $\pi_T$ .



# How to Reduce Correlation (ρ) among Samples?

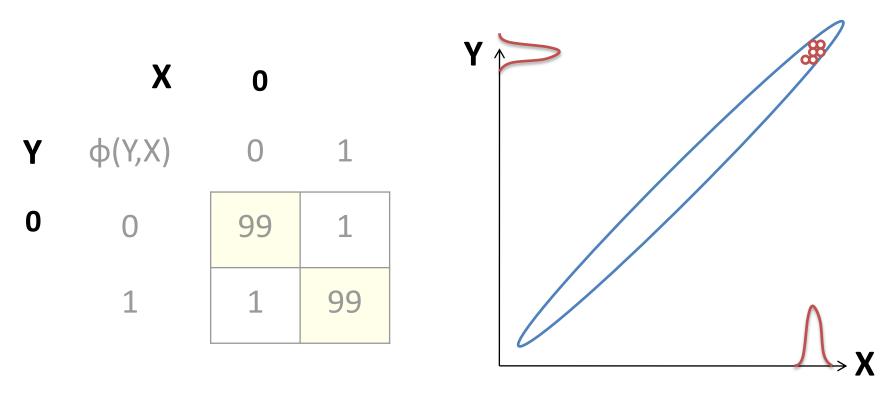
#### **Taking Large Step in Sample Space:**

Block Gibbs Sampling

Collapsed-Particle Sampling

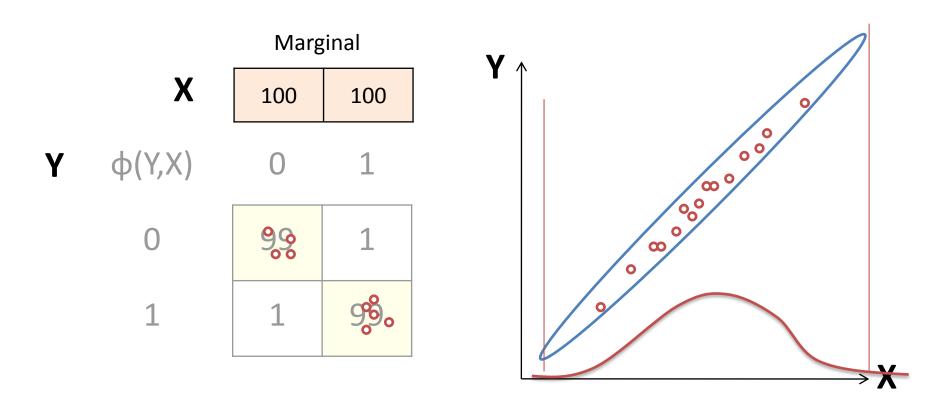
#### Problem of Gibbs Sampling

Correlation ( $\rho$ ) between samples is high, when correlation among variables  $X_1 \sim X_K$  is high.



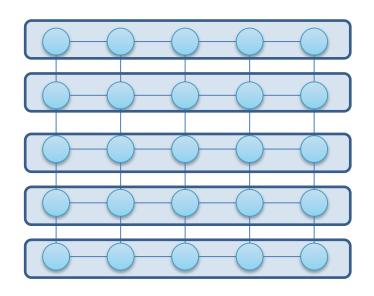
Taking very large M to converge to  $\pi_T$ .

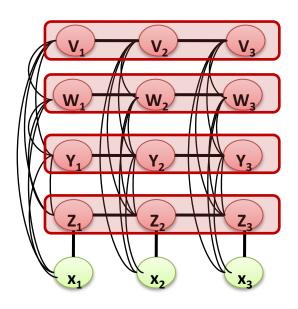
#### Draw "block" of variables jointly: P(X,Y)=P(X)P(Y|X)



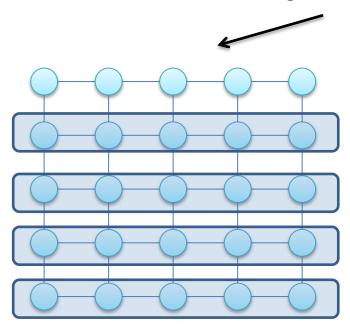
Converge to  $\pi_{\!\scriptscriptstyle T}$  much quickly.

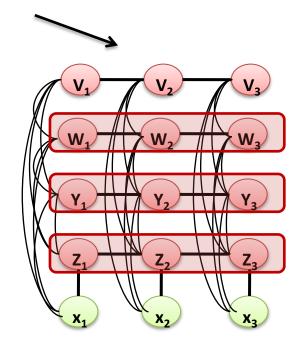
Divide X into several "tractable blocks"  $X_1$ ,  $X_2$ , ...,  $X_B$ . Each block  $X_b$  can be drawn jointly given variables in other blocks.



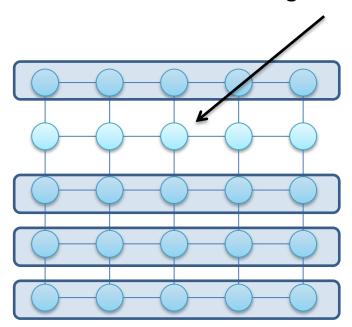


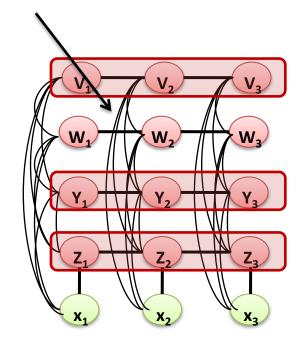
Divide X into several "tractable blocks"  $X_1$ ,  $X_2$ , ...,  $X_B$ . Each block  $X_b$  can be drawn jointly given variables in other blocks.



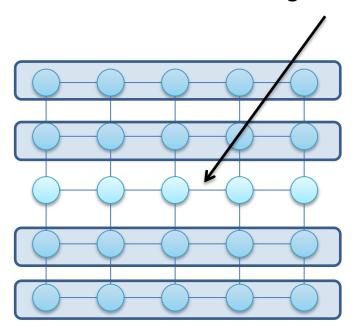


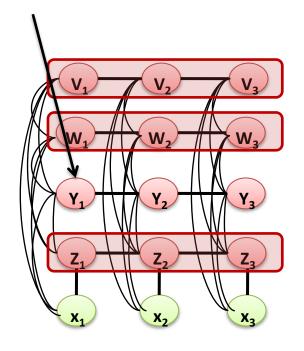
Divide **X** into several "tractable blocks"  $X_1$ ,  $X_2$ , ...,  $X_B$ . Each block  $X_b$  can be drawn jointly given variables in other blocks.



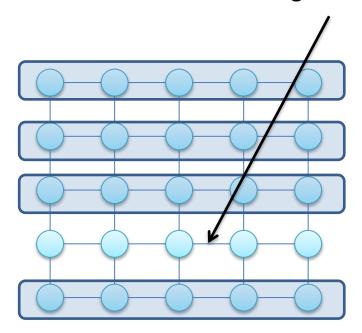


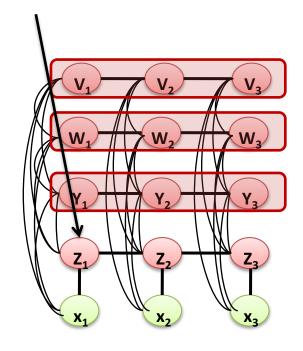
Divide **X** into several "tractable blocks"  $X_1$ ,  $X_2$ , ...,  $X_B$ . Each block  $X_b$  can be drawn jointly given variables in other blocks.

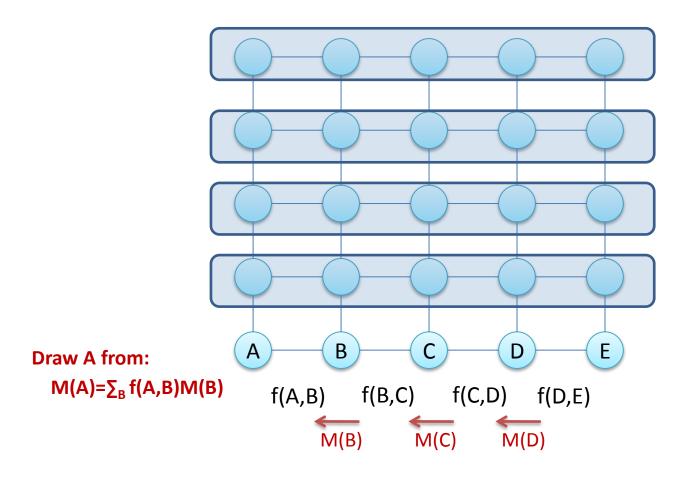


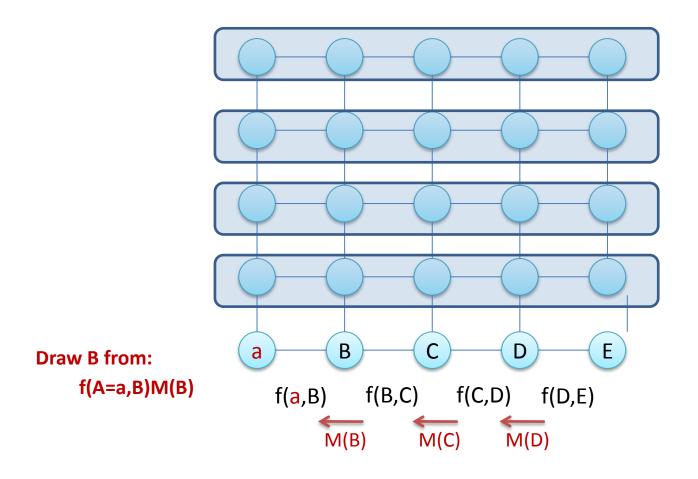


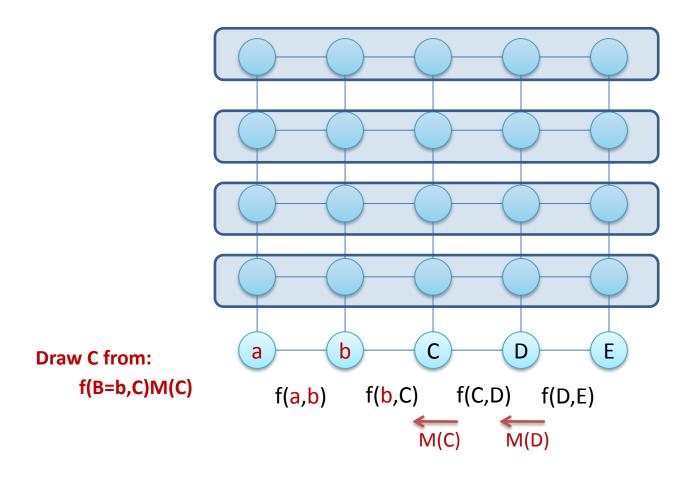
Divide **X** into several "tractable blocks"  $X_1$ ,  $X_2$ , ...,  $X_B$ . Each block  $X_b$  can be drawn jointly given variables in other blocks.

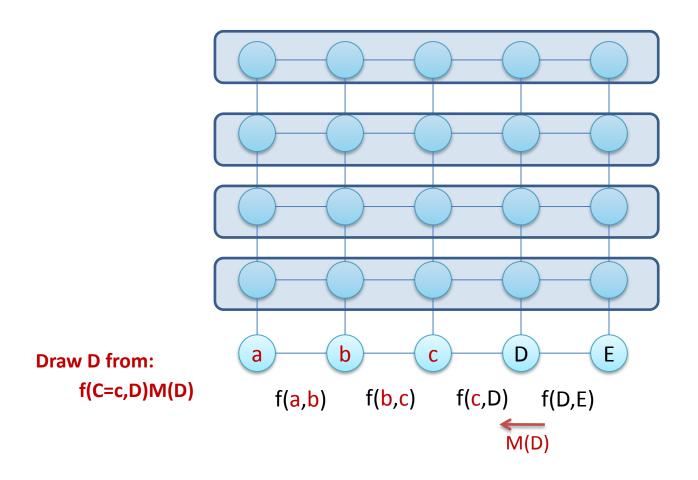




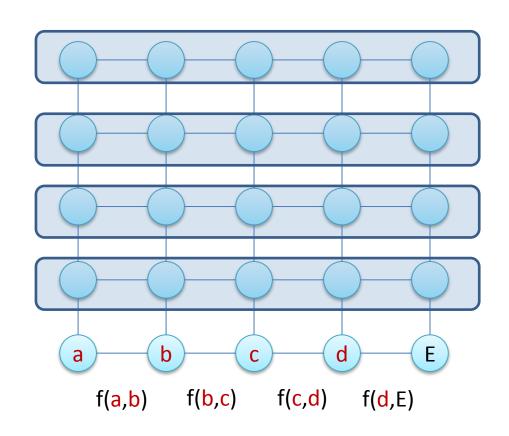






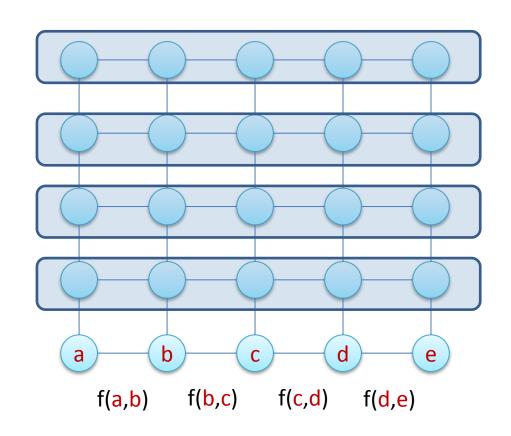


Drawing from a block  $X_b$  jointly may need 1 pass of VE.

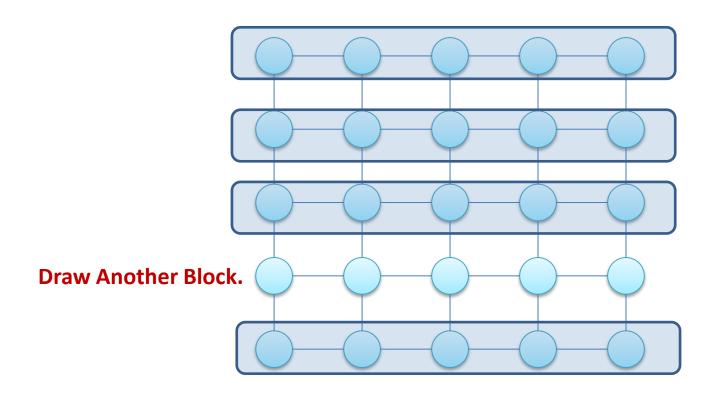


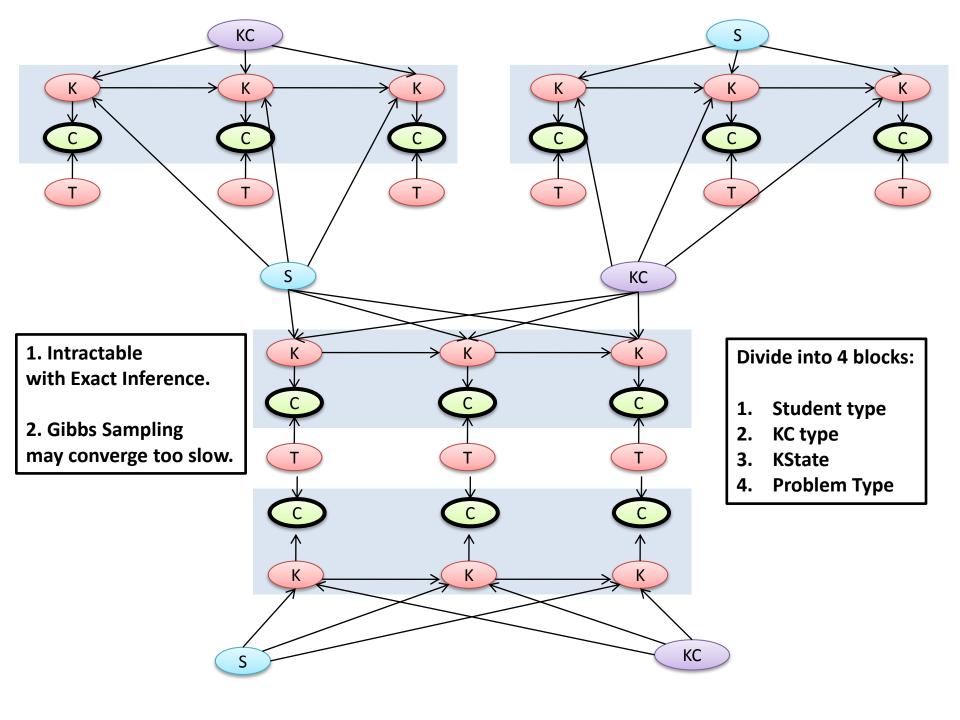
Draw E from: f(D=d,E)

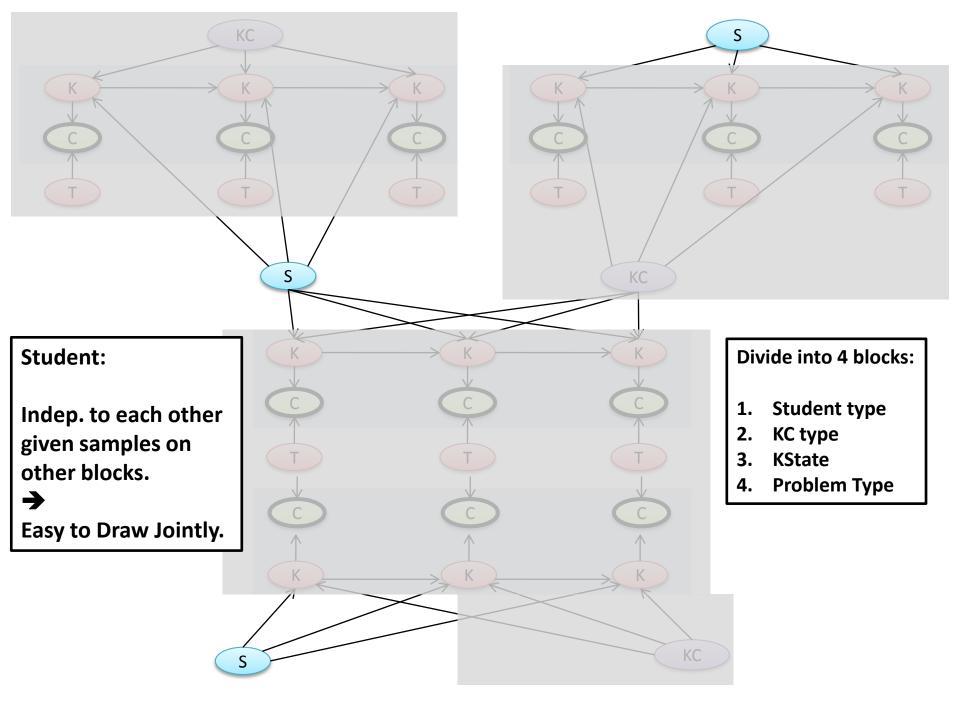
Drawing from a block  $X_b$  jointly may need 1 pass of VE.

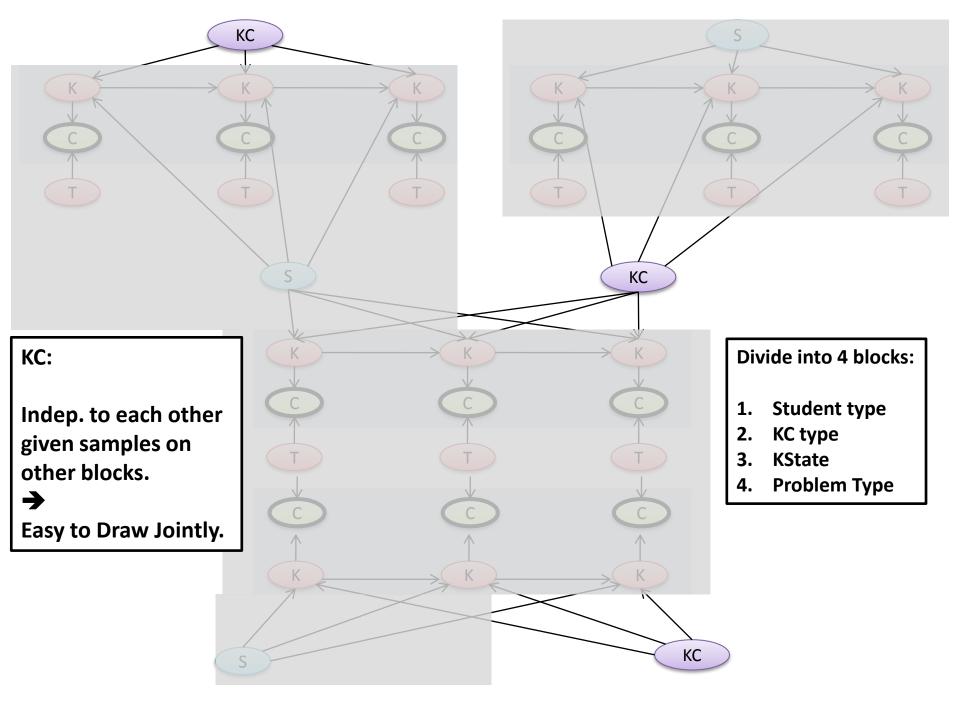


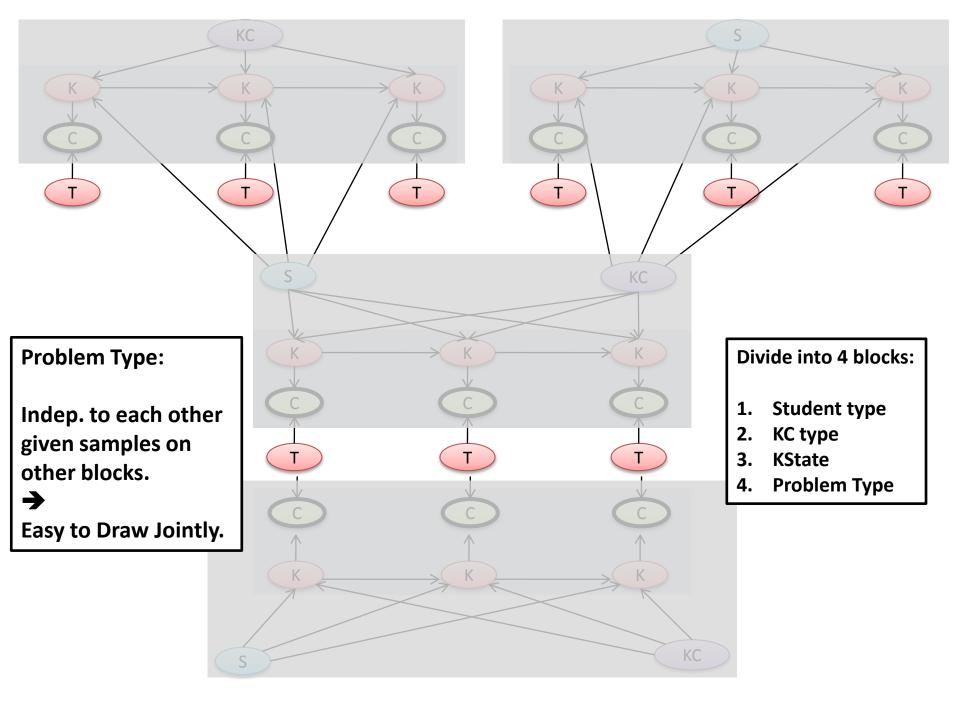
Draw E from: f(D=d,E)

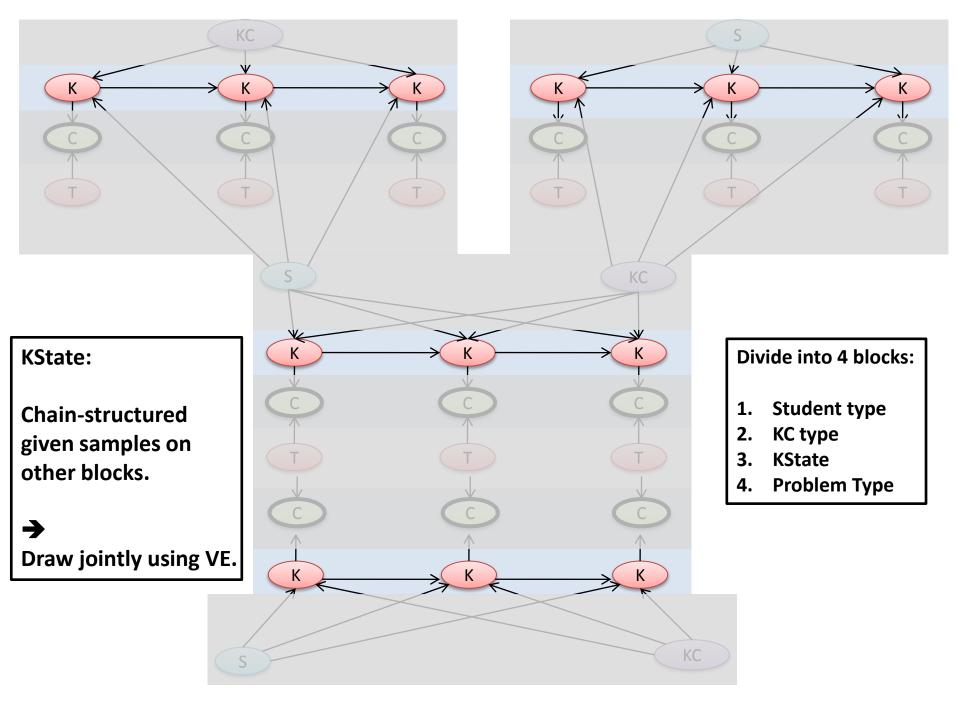












## Agenda

- When to use Approximate Inference?
- Forward Sampling & Importance Sampling
- Markov Chain Monte Carlo (MCMC)
- Collapsed Particles

### Collapsed Particle

Exact: 
$$E_{P(X)}[f(X)] = \sum_{X} P(X) * f(X)$$

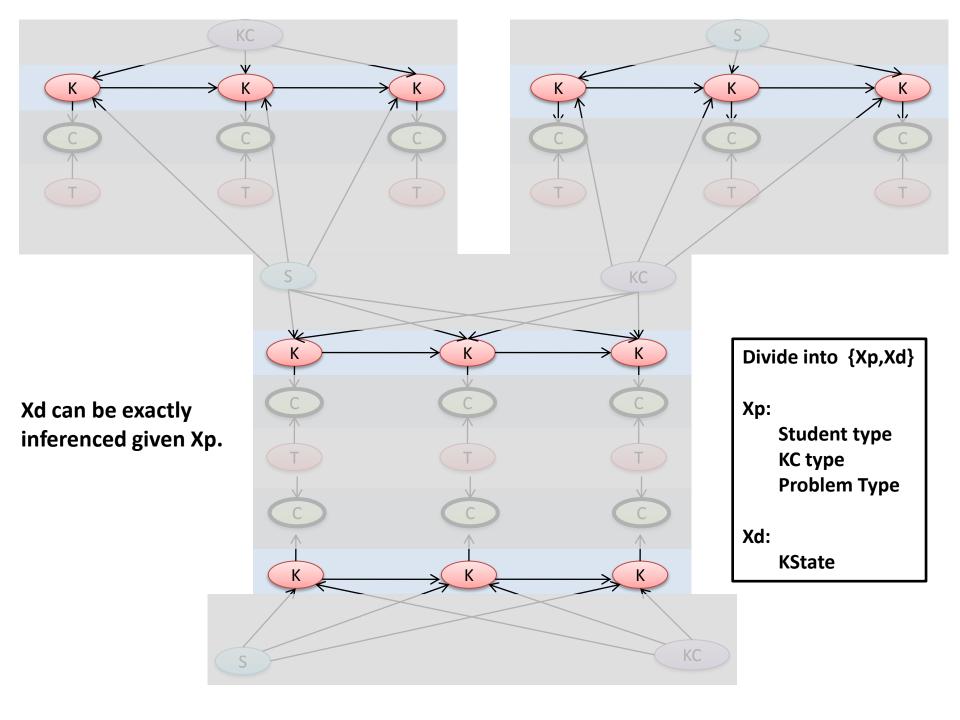
Particle-Based: 
$$\hat{f} = \frac{1}{N} \sum_{n=1}^{N} f(X^{(n)})$$

#### Collapsed-Particle:

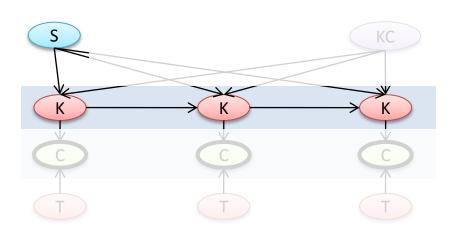
Divide X into 2 parts  $\{X_p, X_d\}$ , where  $X_d$  can do inference given  $X_p$ 

$$\begin{split} E_{P(X)}[f(X)] &= \sum_{X} P(X) * f(X) = \sum_{Xp} P(X_p) \sum_{Xd} P(X_d \mid X_p) * f(X) \\ \hat{E}_{P(X)}[f(X)] &= \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{Xd} P(X_d \mid X_p^{(n)}) f(X_d, X_p^{(n)}) \right) \end{split}$$

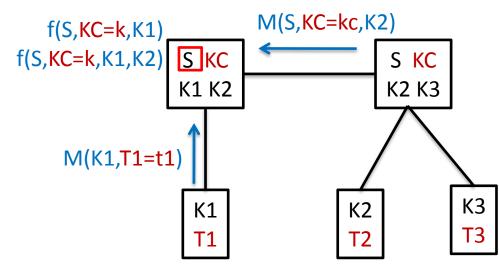
(If  $X_p$  contains few variables, Var. can be much reduced !!)



#### Collapsed Particle with VE



To draw X<sub>k</sub>, **Given** all other variables in **Xp sum out** all other variables in **Xd** 



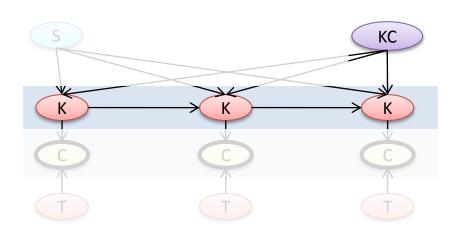
Draw S (given KC=k & T=t) from:

$$M(S)=$$

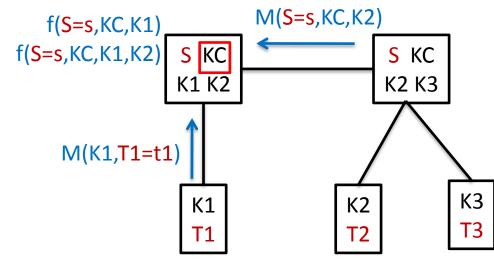
 $\sum_{K1.K2} F(S,KC=k,K1,K2) M(K1,T1=t1) M(S,KC=k,K2)$ 

f(T3)

#### Collapsed Particle with VE



To draw X<sub>k</sub>, **Given** all other variables in **Xp sum out** all other variables in **Xd** 



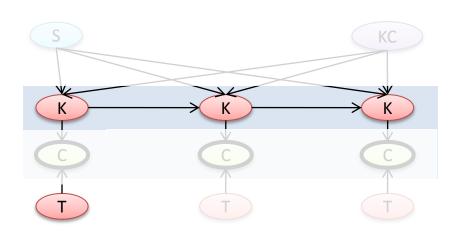
f(T3)

Draw KC (given S=s & T=t) from:

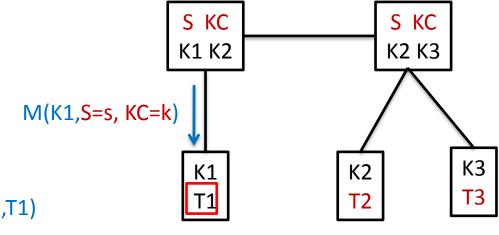
$$M(KC)=$$

$$\sum_{K1,K2} F(S=s,KC,K1,K2) M(K1,T1=t1) M(S=s,KC,K2)$$

#### Collapsed Particle with VE



To draw X<sub>k</sub>, **Given** all other variables in **Xp sum out** all other variables in **Xd** 



Draw T1 (given S=s & KC=k) from:

 $M(T1) = \sum_{K1} M(K1,S=s,KC=k) F(K1,T1)$ 

#### **Collect Samples**

**Xp**(S, KC, T1, T2, T3)

(K1, K2, K3)

(Intel, Quick, Hard, Easy, Hard) ({1/3,1/3,1/3}, {1/4,1/4,1/2}, {1/2,1/2,0}) (Intel, Slow, Easy, Easy, Hard) ({1/2,1/2,1/4}, {1/5,4/5,0}, {1/4,1/4,1/2})

····

(Dull, Slow, Easy, Easy, Hard)  $(\{1/3,1/3,1/3\},\{1/4,1/4,1/2\},\{1/2,1/2,0\})$ 

Average Average

$$\hat{E}_{P(X)}[f(X)] = \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{Xd} P(X_d \mid X_p^{(n)}) f(X_d, X_p^{(n)}) \right)$$