
Particle-Based Approximate Inference 
on Graphical Model 

Reference: 
 
    Probabilistic Graphical Model Ch. 12 (Koller & Friedman) 
    CMU, 10-708, Fall 2009  Probabilistic Graphical Models Lectures  18,19 (Eric Xing) 
    Pattern Recognition & Machine Learning Ch. 11. (Bishop) 



In terms of difficulty,  
there are 3 types of inference problem. 

•  Inference which is easily solved with Bayes rule. 

 

 

• Inference which is tractable using some dynamic 
programming technique. 

 (e.g. Variable Elimination or J-tree algorithm ) 

 

 

•  Inference which is proved intractable  

 & should be solved using some Approximate Method. 

 (e.g. Approximation with Optimization or Sampling technique.) 

Today’s focus 



Agenda 

• When to use Particle-Based Approximate Inference ? 

 

• Forward Sampling & Importance Sampling 

 

•  Markov Chain Monte Carlo (MCMC) 

 

• Collapsed Particles 
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Example : General Factorial HMM 
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A clique size=5,   
intractable most of times. 
(No tractable elimination exist…) 



Some Model are Intractable for Exact Inference 

Example: A Grid MRF 
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Example: A Grid MRF 

Generally, we will have clique of “size N”  
for a N*N grid, which is indeed intractable. 

Approximate Inference 
needed. 

Some Model are Intractable for Exact Inference 



General idea of 
Particle-Based (Monte Carlo) Approximation 
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Most of Queries we want can be formed as: 

which is intractable most of time. Assume we can generate i.i.d. samples 
X(1)…X(n) from P(X), we can approximate above using: 
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It’s a unbiased estimator whose variance converges to 0 when N∞. 
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Var. not Related to  
dimension of X. 
Var0 as N∞ 

Intractable when K ∞. 



Which Problem can use 
Particle-Based (Monte Carlo) Approximation ? 

• Type of queries: 
 

– 1. Likelihood of evidence/assignments on variables 

– 2. Conditional Probability of some variables (given others). 

– 3.  Most Probable Assignment for some variables (given others ). 

 )...(*)...(...)]([ 11)(

1


KX

KK

X

XP XXfXXPXfE

Problem which can be written as following form: 



Marginal Distribution (Monte Carlo) 

] }{1 [

}{1*),(),(

)(

)( kkXP

X

kk

X

kk

X

kkk

kk

xXE

xXXXPXxXP

xXP

k kk












Particle-Based Approximation: 

To Compute Marginal Distribution on Xk 
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( Just count the proportion of samples in which Xk=xk ) 



Marginal Joint Distribution (Monte Carlo) 
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Particle-Based Approximation: 

To Compute Marginal Distribution on ( Xi , Xj  ) 
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( Just count the proportion of samples in which Xi=xi & Xj=xj  ) 



So What’s the Problem ? 

Note what we can do is:  

 “Evaluate” the probability/likelihood P(X1=x1,…, XK=xK). 

What we want to do (for approximation) is:  

  “Draw” samples from P(X1,…, XK). 

What we cannot do is:  

  Summation / Integration in high-dim. space:   ∑X P(X1,…, XK). 

How to make better use of samples ? 

How to know we’ve sampled enough ? 



How to draw Samples from P(X) ? 

• Forward Sampling 
       draw from ancestor to descendant in BN. 
   
• Rejection Sampling 
       create samples using Forward Sampling, and reject those 
       inconsistent with evidence. 
 
• Importance Sampling 
       Sample from proposal dist. Q(X), but give large weight on  
       sample with high likelihood in P(X). 
 
• Markov Chain Monte Carlo 

Define a Transition Dist. T(xx’) s.t. samples can get closer 
and closer to P(X). 



Agenda 

• When to use Particle-Based Approximate Inference ? 

 

• Forward Sampling & Importance Sampling 

 

•  Markov Chain Monte Carlo (MCMC) 

 

• Collapsed Particles 



Forward  Sampling 
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Forward  Sampling 

Burglary Earthquake 

Alarm 

John Calls Mary Calls 

P(B) 

0.001 
~b 

P(E) 

0.002 
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B E P(A) 

t t 0.95 

t f 0.94 
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i.i.d Sample :  (~b,e,a,j,~m) 



Forward Sampling 

Samples :   
(~b,e,a,j,~m) 
… 
… 
(~b,~e, a,~j, ~m) 

Particle-Based Represent 
of the joint distribution P(B,E,A,J,M). 
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What if we want samples from P( B, E, A | J=j , M=~m ) ? 

1. Collect all samples in which  J=j  , M=~m . 
 

2.  Those samples form the particle-based representation 
 of  P( B, E, A | J=j, M=~m). 

Disadvantage……. 



Forward Sampling from P(Z|Data) ? 

1 0 
1 0 

Z3 ZK 
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…… Z 

X 

1. Forward Sampling N times. 
 

2. Collect all samples (Z(n),X(n))  in which X1=1, X2=0, X3=1, …… XK=0. 
 

3. Those samples form the particle-based representation of P(Z|X). 

How many such samples can we get ??    
  N*P(Data)  !!  ( Less than 1 if N not large enough……) 

Solutions……. 



Importance Sampling to the Rescue 
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We need not draw from P(X) to compute EP(X)[f(X)] : 

That is, we can draw from an arbitrary distribution Q(X), but give 
larger weights on samples having higher probability under P(X). 
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Importance Sampling to the Rescue 
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Sometimes we can only evaluate an unnormalized 
distribution : 
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Note that we can compute       only if we can evaluate a normalized distribution               , 
that is, we have         or               is from a BN. 

Ẑ )(XQ

QZ )(XQ

Then we can estimate Z as follows: 
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Importance Sampling from P(Z|Data) ? 

1. Sampling from P(Z), a normalized distribution obtained from BN 
truncating the part with evidence. 

A A 
A B 
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Importance Sampling from P(Z|Data) ? 

1. Sampling from P(Z), a normalized distribution obtained from BN 
truncating the part with evidence. 
 

2. Give each sample (Z(n), X(n)) a weight: 
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Importance Sampling from P(Z|Data) ? 

1. Sampling from P(Z), a normalized distribution obtained from BN 
truncating the part with evidence. 
 

2. Give each sample (Z(n), X(n)) a weight: 
 
 
 

3. The effective number of samples is  
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(A,B,A,…,A)         w= 0.01 
(A,B,A,…,B)  0.3 
(B,B,B,…,A)  1.0 

Neff = 1.31 

P(Data)=Neff/N = 1.31/3 
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Importance Sampling from P(Z|Data) ? 

(A,B,A,…,A)         w= 0.01 
(A,B,A,…,B)  0.3 
(B,B,B,…,A)  1.0 

Neff = 1.31 

P(Data)=Neff/N = 1.31/3 

To get estimate of P(Z1|Data) : 
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Any joint dist. can be estimated. ( No “out of clique” problem ) 



Bayesian Treatment  
with Importance Sampling 

Ex.   Pθ(Y=1|X) = logistic( θ1*X + θ0  ) 

Often, Posterior on parameters θ : 
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is intractable because many types of Pθ(Data|θ) cannot be integrated analytically. 

We need not evaluate “the integration”  to estimate P(θ|Data) using Importance 
Sampling. 
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What’s the problem ? 

Val(X) 

Q(X) P(X) 

If P(X) and Q(X) not matched properly…… 
 
Only small number of samples will fall in the region with high P(X). 
 
  Very large N needed to get a good picture of P(X). 

P(X) ^ 



How P(Z|X) and Q(Z) Match ? 

Evidence 

Q(Z) close to P(Z|X) 

When evidence is close to root, 
forward sampling is a good Q(Z), 
which can generate samples with 
high likelihood in P(Z|X). 



How P(Z|X) and Q(Z) Match ? 

Evidence 

Q(Z)  far  from  P(Z|X) 

So we need very large sample size 
to get a good picture of P(Z|X). 

Can we improve with time to draw from a distribution  
more like the desired P(Z|X) ?   
MCMC try to draw from a distribution closer and closer to P(Z|X). 
     ( Apply equally well in BN & MRF. ) 

When evidence is on the leaves, 
forward sampling is a bad Q(Z), 
yields very low likelihood=P(X|Z). 



Agenda 

• When to use Particle-Based Approximate Inference ? 

 

• Forward Sampling & Importance Sampling 

 

•  Markov Chain Monte Carlo (MCMC) 

 

• Collapsed Particles 



What is Markov Chain (MC) ? 

A set of Random Variables: 
X = (X1,….XK) 
 
Variables change with Time: 
X(t) = (X1

(t),….XK
(t)) 

 
which take transition following: 
P(X(t+1) =x’|X(t) =x) = T(xx’) 

There is a stationary distribution πT(X) for Transition T, in which: 

πT(X=x’)  = ∑x  πT(X=x) * T(xx’) 

Ex.  The MC (Markov Chain) above has only 1 variable X taking on values {x1,x2,x3},  

    TT T  
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05.05.0

3.07.00

75.0025.0

 3.05.02.0*There is a πT   s.t.  

Possible 
Configurations 
of X 

(After transition, still the same distribution over all possible configurations X1~X3) 



What is MCMC 
(Markov Chain Monte Carlo) ? 

Importance Sampling is efficient only if Q(X) matches P(X) well. 
Finding such Q(X) is difficult. 

Instead, MCMC tries to find a transition dist. T(xx’), 
s.t.  X tends to transit into states with high P(X),  

Setting X(0)=any initial value, we samples X(1),X(2)……X(M) following T(xx’), and 
hope that X(M) follows stationary distribution πT = P(X). 
If X(M) really does , we got a sample X(M)  from P(X). 

Why will the MC converge to stationary distribution ?  there is a simple, useful  
sufficient condition: 

“Regular “ Markov Chain : (for finite state space) 
Any state x can reach any other states x’ with prob. > 0. 
(all entries of Potential/CPD > 0 )  
  
  X(M) follows a unique πT as M large enough. 

P(X) 

T(xx’) 

and finally follows stationary dist.  πT = P(X). 



Example Result 



How to define T(xx’) ? ---- Gibbs Sampling 

Gibbs Sampling is the most popular one used in Graphical Model. 
In graphical model : 

T1(x1x1’), T2(x2x2’), …… TK(xKxK’) 

So, we define T(XX’) in Gibbs-Sampling as : 
Taking transition of X1 ~ XK in turn with transition distribution : 

Where 

Tk(xkxk’) = P(Xk=xk’|X-k) 

In a Graphical Model,  

P(Xk=xk’|X-k) = P( Xk=xk’|Markov Blanket( Xk )  ) 

( Redraw Xk ~ conditional dist. given all others. ) 

It is easy to draw sample from “each individual variable given others P(Xk|X-k)”, 
while drawing from the joint dist. of (X1,X2,…,XK) is difficult. 



Gibbs Sampling for MRF 

0 0 

0 1 

1 

1 

0 0 1 

Gibbs Sampling : 
 
       1.  Initialize all variables randomly. 
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Gibbs Sampling for MRF 
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Gibbs Sampling : 
 
       1.  Initialize all variables randomly. 
       for  t = 1~M 
               for  every variable X 
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Gibbs Sampling for MRF 
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Gibbs Sampling : 
 
       1.  Initialize all variables randomly. 
       for  t = 1~M 
               for  every variable X 
                     2. Draw Xt from P( X | N(X)t-1 ). 
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Gibbs Sampling for MRF 
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Gibbs Sampling : 
 
       1.  Initialize all variables randomly. 
       for  t = 1~M 
               for  every variable X 
                     2. Draw Xt from P( X | N(X)t-1 ). 
               end 
       end 
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 When M is large enough, X(M) follows stationary dist. : 

 (Regularity:  All entries in the Potential are positive.) 



Why Gibbs Sampling has πT = P(X) ? 

To prove P(X) is the stationary distribution, we prove P(X) is invariant  
under Tk(xkxk’): 

Assume (X1,…,XK) currently follows P(X)= P(Xk|X-k)*P(X-k), 
 
 

1. After Tk(xkxk’), X-K still follows P(X-k) because they are unchanged. 
 
 

2. After Tk(xkxk’)=P(Xk=xk’|X-k)  (new state indep. from current value xk )  

   Xk(t) still follows P(Xk|X-k). 

 

 
So, after T1(x1x1’) , ……, T1(xKxK’),  X=(X1,…,XK) still follows P(X). 
 
( Uniqueness & Convergence guaranteed from Regularity of MC. ) 



Gibbs Sampling not Always Work 

When drawing from individual variable is not possible: 
( We can evaluate P(Y|X) but not P(X|Y). ) 
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Other MCMC like Metropolis-Hasting needed. (see reference.) 
 



Metropolis-Hasting ----MCMC 

Metropolis-Hasting (M-H) is a general MCMC method to sample P(X|Y) 
whenever we can evaluate P(Y|X).  ( evaluation of P(X|Y) not needed ) 

In M-H, instead of drawing from P(X|Y), we draw from another Proposal Dist. 
T(xx’) based on current sample x, and Accept the Proposal with probability: 
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Example :  P(X) = N(μ,σ2) 

Proposal  Dist. T(xx’) = N( x, 0.22 ) 

( red: Reject ) 
( green: Accept ) 
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Example :  Structure Posterior = P(G|Data) 
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Why  Metropolis-Hasting  has  πT = P(X) ?  

Detailed-Balance Sufficient Condition: 

If  πT(x’)*T(x’x) = πT(x)*T(xx’), then  πT(x) is stationary under T. 

Given desired πT(x)=P(X) ,  and a Proposal dist. T(xx’) , 
we can let Detailed Balance satisfied using accept prob. A(xx’) : 
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How to Collect Samples ? 

MC1 
… 
… 

M 

M 

1. Run N times of MCMC and 
collect their Mth samples. 

Assume we  want collecting N samples: 

N 

MCN 

2.    Run 1 time of MCMC and collect (M+1)th ~ (M+N)th samples. 

MC1 
M M+N 

What’s the difference ?? 



How to Collect Samples ? 

MC1 
… 
… 

M 

M 

1. Run N times of MCMC and 
collect their Mth samples. 

Assume we  want collecting N samples: 

N 

MCN 

Independent  
Samples 

Cost = M*N  samples 

2.    Run 1 time of MCMC and collect (M+1)th ~ (M+N)th samples. 

MC1 
M M+N 

Correlated Samples 

Cost = M + N  samples 



Comparison 

MC1 
… 
… 

M 

M 

N 

MCN 

Independent  
Samples 

Cost = M*N  samples 

MC1 M M+N 

Correlated Samples 

Cost = M + N  samples 

 )]([)]([
1

])([
1

 ])(
1

[]ˆ[
1

)(

1

)(

1

)( XfEXfE
N

XfE
N

Xf
N

EfE
N

n

n
N

n

n
N

n

n  


No Independent Assumption Used    Unbiased Estimator in both cases. 
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Practically, many correlated samples (right) outperforms few independent samples (left). 



How to Check Convergence ? 

MC1 
M M+N 

MC2 
M M+N 

Should be consistent 
if converge to πT 
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The Critical Problem of MCMC 

When ρ1  ,  M∞  ,   Var[.] not decreasing with N  
 MCMC cannot yield acceptable result in reasonable time. 

0.0001 

0.0002 

P(X) 

Taking very large M to converge to πT . 



How to Reduce Correlation (ρ) 
among Samples ? 

• Block Gibbs Sampling 

 

• Collapsed-Particle Sampling 

Taking Large Step in Sample Space : 



Problem of Gibbs Sampling 

Correlation (ρ) between samples is high, 
when correlation among variables X1~XK is high. 

φ(Y,X) 0 1 

0 99 1 

1 1 99 

Y 

X 

0 

0 

X 

Y 

Taking very large M to converge to πT . 



Block Gibbs Sampling 

φ(Y,X) 0 1 

0 99 1 

1 1 99 

Y 

X 

X 

Y 

Draw “block” of variables jointly:  P(X,Y)=P(X)P(Y|X) 

100 100 

Marginal 

Converge to πT much quickly. 



Block Gibbs Sampling 

Divide X into several “tractable blocks” X1, X2, …, XB.  
Each block Xb can be drawn jointly given variables in other blocks. 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 



Block Gibbs Sampling 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 

Given samples on other blocks,  
Drawing a block jointly from is tractable. 

Divide X into several “tractable blocks” X1, X2, …, XB.  
Each block Xb can be drawn jointly given variables in other blocks. 



Block Gibbs Sampling 
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x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 

Divide X into several “tractable blocks” X1, X2, …, XB.  
Each block Xb can be drawn jointly given variables in other blocks. 

Given samples on other blocks,  
Drawing a block jointly from is tractable. 



Block Gibbs Sampling 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 

Divide X into several “tractable blocks” X1, X2, …, XB.  
Each block Xb can be drawn jointly given variables in other blocks. 

Given samples on other blocks,  
Drawing a block jointly from is tractable. 



Block Gibbs Sampling 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 

Divide X into several “tractable blocks” X1, X2, …, XB.  
Each block Xb can be drawn jointly given variables in other blocks. 

Given samples on other blocks,  
Drawing a block jointly from is tractable. 



Block Gibbs Sampling by VE 

Drawing from a block Xb jointly may need 1 pass of VE. 

A B C D E 

f(D,E) f(C,D) f(B,C) f(A,B) 

M(D) M(C) M(B) 

Draw A from: 

    M(A)=∑B f(A,B)M(B) 



Block Gibbs Sampling by VE 

a B C D E 

f(D,E) f(C,D) f(B,C) f(a,B) 

M(D) M(C) M(B) 

Draw B from: 

         f(A=a,B)M(B) 

Drawing from a block Xb jointly may need 1 pass of VE. 



Block Gibbs Sampling by VE 

a b C D E 

f(D,E) f(C,D) f(b,C) f(a,b) 

M(D) M(C) 

Draw C from: 

         f(B=b,C)M(C) 

Drawing from a block Xb jointly may need 1 pass of VE. 



Block Gibbs Sampling by VE 

a b c D E 

f(D,E) f(c,D) f(b,c) f(a,b) 

M(D) 

Draw D from: 

         f(C=c,D)M(D) 

Drawing from a block Xb jointly may need 1 pass of VE. 



Block Gibbs Sampling by VE 

a b c d E 

f(d,E) f(c,d) f(b,c) f(a,b) 

Draw E from: 

         f(D=d,E) 

Drawing from a block Xb jointly may need 1 pass of VE. 



Block Gibbs Sampling by VE 

a b c d e 

f(d,e) f(c,d) f(b,c) f(a,b) 

Draw E from: 

         f(D=d,E) 

Drawing from a block Xb jointly may need 1 pass of VE. 



Block Gibbs Sampling by VE 

Draw Another Block. 

Drawing from a block Xb jointly may need 1 pass of VE. 



T T T 

C C C 

K K K 

S KC 

T T T 

C C C 

K K K 

KC 

T T T 

C C C 

K K K 

S 

C C C 

K K K 

S KC 

1. Intractable  
with Exact Inference. 
 
2. Gibbs Sampling 
may converge too slow. 

Divide into 4 blocks: 
 
1. Student type 
2. KC type 
3. KState  
4. Problem Type 



T T T 

C C C 

K K K 

S KC 

T T T 

C C C 

K K K 

KC 

T T T 

C C C 

K K K 

S 

C C C 

K K K 

S KC 

Divide into 4 blocks: 
 
1. Student type 
2. KC type 
3. KState 
4. Problem Type 

Student: 
 
Indep. to each other 
given samples on 
other blocks. 
  
Easy to Draw Jointly. 



T T T 

C C C 

K K K 

S KC 

T T T 

C C C 

K K K 

KC 

T T T 

C C C 

K K K 

S 

C C C 

K K K 

S KC 

Divide into 4 blocks: 
 
1. Student type 
2. KC type 
3. KState 
4. Problem Type 

KC: 
 
Indep. to each other 
given samples on 
other blocks. 
  
Easy to Draw Jointly. 



T T T 

C C C 

K K K 

S KC 

T T T 

C C C 

K K K 

KC 

T T T 

C C C 

K K K 

S 

C C C 

K K K 

S KC 

Problem Type: 
 
Indep. to each other 
given samples on 
other blocks. 
  
Easy to Draw Jointly. 

Divide into 4 blocks: 
 
1. Student type 
2. KC type 
3. KState 
4. Problem Type 



T T T 

C C C 

K K K 

S KC 

T T T 

C C C 

K K K 

KC 

T T T 

C C C 

K K K 

S 

C C C 

K K K 

S KC 

KState: 
 
Chain-structured 
given samples on 
other blocks. 
 
  
Draw jointly using VE. 

Divide into 4 blocks: 
 
1. Student type 
2. KC type 
3. KState 
4. Problem Type 



Agenda 

• When to use Approximate Inference ? 

 

• Forward Sampling & Importance Sampling 

 

•  Markov Chain Monte Carlo (MCMC) 

 

• Collapsed Particles 



Collapsed Particle 

Exact: 

Particle-Based: 

Collapsed-Particle: 
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Divide X into 2 parts {Xp, Xd} , where Xd can do inference given Xp 

(  If Xp contains few variables, Var. can be much reduced !!  ) 



T T T 

C C C 

K K K 

S KC 

T T T 

C C C 

K K K 

KC 

T T T 

C C C 

K K K 

S 

C C C 

K K K 

S KC 

Divide into  {Xp,Xd} 
 
Xp: 
 Student type 
 KC type 
 Problem Type 
 
Xd: 
 KState 

Xd can be exactly 
inferenced given Xp. 



Collapsed Particle with VE 

T T T 

C C C 

K K K 

S KC 

K1 
T1 

K2 
T2 

K3 
T3 

f(T3) 

S  KC 
K1 K2 

S  KC 
K2 K3 

Draw S (given KC=k & T=t) from: 

M(S,KC=kc,K2) 

M(K1,T1=t1) 

f(S,KC=k,K1) 
f(S,KC=k,K1,K2) 

M(S)= 
∑K1,K2 F(S,KC=k,K1,K2) M(K1,T1=t1) M(S, KC=k,K2) 

To draw Xk , 
Given all other variables in Xp 
sum out all other variables in Xd 



Collapsed Particle with VE 

T T T 

C C C 

K K K 

S KC 

K1 
T1 

K2 
T2 

K3 
T3 

f(T3) 

S  KC 
K1 K2 

S  KC 
K2 K3 

Draw KC (given S=s & T=t) from: 

M(S=s,KC,K2) 

M(K1,T1=t1) 

f(S=s,KC,K1) 
f(S=s,KC,K1,K2) 

M(KC)= 
∑K1,K2 F(S=s,KC,K1,K2) M(K1,T1=t1) M(S=s,KC,K2) 

To draw Xk , 
Given all other variables in Xp 
sum out all other variables in Xd 



Collapsed Particle with VE 

T T T 

C C C 

K K K 

S KC 

K1 
T1 

K2 
T2 

K3 
T3 

f(T3) 

S  KC 
K1 K2 

S  KC 
K2 K3 

Draw T1 (given S=s & KC=k) from: 

M(K1,S=s, KC=k) 

M(T1) = ∑K1 M(K1,S=s,KC=k) F(K1,T1) 

To draw Xk , 
Given all other variables in Xp 
sum out all other variables in Xd 



Collect Samples 

Xp Xd 

(S, KC, T1, T2, T3) ( K1, K2, K3) 

(Intel, Quick, Hard, Easy, Hard) 

(Intel, Slow, Easy, Easy, Hard) 

( {1/3,1/3,1/3} , {1/4,1/4,1/2}, {1/2,1/2,0}) 

(Dull, Slow, Easy, Easy, Hard) 

( {1/2,1/2,1/4} , {1/5,4/5,0}, {1/4,1/4,1/2}) 

( {1/3,1/3,1/3} , {1/4,1/4,1/2}, {1/2,1/2,0}) 

….. ….. 
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Average Average 


