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• Where is the bottleneck ? 

– I/O dominates often  [Yu. 2010] [Chang. 2011] 

– More serious when memory size less than data size 

 

• Observation 

– Given large training data, usually a crucial subset of data is key to improve 

accuracy. 

– Referred as “dual-sparsity” in SVM literature. 

 

 

• We can save a lot by reading only crucial samples into Memory 

– Challenge: Not known a priori 

– Our solution: Maintain index before Learning 
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Outline 

• Truncated-Loss for Sublinear Dual-Sparsity 

– Sequential Relaxation for Truncated-Loss 

 

•  Indexed Learning 

– Informative sample as Nearest Neighbor 

– Indexed Block Coordinate Descent 

– Solving block sub-problem  

 

• Implementation of Indexing 

 

• Experiments 

 



Improve Dual Sparsity from Linear to Sublinear --- 

Exploiting Truncated Loss 

• Regular Support Vector Machine 

– |SV| linear to |data| for non-separable case 

 

• General Truncated-Loss 

– We can modify any Convex Loss L(.) 

      to Truncated-Loss R(.)=min{ L(.), 1+s } 

 

– Pros: (1) Suppress influence of outliers. 

              (2) |SV| sublinear to |data| empirically. 

 

– Cons: Non-convex problem  

  CCCP  for L1-loss  [Collobert. 2006] 

 

– General Relaxation for Truncated-Loss 
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Sequential Relaxation  

for Truncated-Loss Problem 

Truncated-Loss Problem: 

•    Minimize (2) decreases objective (1). 

•    Reason:  i. Outlier have loss R(.)=1+s,  while  non-outliers have loss R(.)=L(.). 

   ii. Both  1+s  and  L(.) upper-bound  R(.)=min{ L(.),1+s }. 
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  For each iteration, ignore OUT(wt) and solve convex-loss L(.) on only IN(wt). 



Sequential Relaxation  

for Truncated-Loss Problem 

(1) 

Theorem 1: The sequence               produced by (2) converges to a stationary point of 

(1) with at least linear rate. 

Proof:  By reduction to Block Coordinate Descent on non-convex quadratic problem: 

between  w  and  d. 
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Block Coordinate Descent (BCD) in the Dual 

Now we focus on L1-loss, L2-loss SVM problems: 

Block Coordinate Descent on the Dual: 

Dual-Sparsity:   The optimal solution        contains only |SV| << N  non-zeros. 

Shrinking:  Iteratively eliminate non-active        from working set.  [Joachims, 1998] 

Caching:  Read partition of data into  memory, caching samples with active       . [Chang, 2011] 

Indexing:  Read only samples with most active       into memory via ANN Search Index. 

To avoid I/O in limited-memory case: 



Informative Samples as Nearest Neighbors 

Samples with non-zero            : 

Standard ANN (similarity) search finds: 

Transform target samples as Nearest Neighbor in embedded space defined by V(.): 

where V(.) is degree-2 polynomial feature expansion. 

  Indexing data with product defined by                   ,  query with                     . 

R(.) R(.) 



Indexed Block Coordinate Descent 

Cost each iteration: 

Balance between these two terms: 

Set                  = # of explored. 
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•  Global convergence to the solution of  the Dual Problem. 
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Solving Block Sub-problems 

Block Sub-problem (Dual) Block Sub-problem (Primal) 

They are standard Linear SVM problems. In this work, we empoly: 

 

•  L1 (hinge) loss      Dual Coordinate Descent (DCD). [Heish, 2008] 

 

•  L2-Loss     Trust-Region Quasi-Newton [Lin. 2008] and DCD. 
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Implementation of Indexing 

• K-way Metric Tree 

–  K reference points partition data into K subsets. 

–  Recursively partitioning.  

 

• Bias Reduction  

–  Avoid bias to few reference points. 

–  Bootstrap and build index for each random subsets. 

 

• Incremental Search 

– Best-Bin-First search on each tree. 

– Traverse different trees in random order. …… 

Subset 1 Subset M 
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Experiment – Data and Index 

•  Feature scaled to [0,1]. 

•  C=1, s=1 for all experiments. 

Methods Compared: 

 

•   Convex-Loss Solver 

•   Truncated-Loss Solver 

•   Indexed Truncated-Loss Solver 

Solvers: (Liblinear, Pegasos) 

 

•   L1-Loss (hinge-loss) 

     -- Dual Coordinate Descent 

     -- SGD (online) 

 

•   L2-Loss 

     --  Trust-Region Quasi-Newton 

     --  Dual Coordinate Descent 

     --  SGD (online) 



|SV| vs. Truncated-Loss parameter (1+s) 



Testing Error vs. Time (log-scale) 
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Testing Error vs. Time (log-scale) 
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L2-Loss,  

Dual Coordinate Descent 



C=0.01, 0.1, 10 and 100 

L1-Loss,  Dual Coordinate Descent 



Conclusion 

• The bottleneck of large-scale Linear Classification lies on time spent 

on disk/network I/O. 

 

• In this work, we propose Indexed Block Coordinate Descent to solve 

Truncated-Loss SVM with both sublinear I/O and computation time. 

 

• Our experiments show orders of magnitude speed up when one pre-

built indexing structure to help solving optimization problem.  

 

• This is especially useful when memory is limited, or there are lots of 

models (from different classes, parameters, or features) to be trained. 
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