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Abstract
MAD-Bayes (MAP-based Asymptotic Deriva-
tions) has been recently proposed as a gen-
eral technique to derive scalable algorithm for
Bayesian Nonparametric models. However, the
combinatorial nature of objective functions de-
rived from MAD-Bayes results in hard optimiza-
tion problem, for which current practice em-
ploys heuristic algorithms analogous to k-means
to find local minimum. In this paper, we con-
sider the exemplar-based version of MAD-Bayes
formulation for DP and Hierarchical DP (HDP)
mixture model. We show that an exemplar-
based MAD-Bayes formulation can be relaxed
to a convex structural-regularized program that,
under cluster-separation conditions, shares the
same optimal solution to its combinatorial coun-
terpart. An algorithm based on Alternating Di-
rection Method of Multiplier (ADMM) is then
proposed to solve such program. In our exper-
iments on several benchmark data sets, the pro-
posed method finds optimal solution of the com-
binatorial problem and significantly improves ex-
isting methods in terms of the exemplar-based
objective.

1. Introduction
In the recent years, MAD-Bayes (MAP-based Asymp-
totic Derivations) has been proposed as a technique to ob-
tain scalable algorithm for Bayesian Nonparametric mod-
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els such as Dirichlet Process (DP) Mixture, Latent Feature
Allocation and Infinite Hidden Markov Model (Broderick
et al., 2013; Kulis & Jordan, 2012; Roychowdhury et al.,
2013; Jiang et al., 2012; Campbell et al., 2013). The objec-
tive function derived from MAD-Bayes, however, hard to
optimize and existing approaches employ algorithms anal-
ogous to k-means that only guarantees to find local opti-
mum. In this paper, we consider exemplar-based version of
the MAD-Bayes objective, where the mean parameters of
each mixture are restricted to be one of the data samples.

The exemplar-based clustering, namely k-medoids prob-
lem, has been investigated since 1987 and known for its
ability to handle arbitrary dissimilarity measure (Kaufman
& Rousseeuw, 1987). The k-medoids problem, however,
is still NP-hard in general (Papadimitriou, 1981; Megiddo
& Supowit, 1984) and the best known approximate al-
gorithm guarantees an approximation ratio of 1 +

√
3 +

ε ≈ 2.732 with theoretical limit being 1 + 2/e ≈ 1.736.
Commonly used algorithms such as Partitioning Around
Medoids (PAM) (Van der Laan et al., 2003) and Affinity
Propagation (AP) (Frey & Dueck, 2007) only guarantee to
find local optimum. On the other hand, a recent interest
in the exemplar-based formulation arose due to its natu-
ral convex relaxation (Yaron & Shalev-Shwartz, 2010; El-
hamifar et al., 2012; Awasthi et al., 2015; Nellore & Ward,
2013) . The convex relaxation, without additional assump-
tions, could lead to fractional solutions and thus does not
guarantee to find optimum of the original problem (Yaron
& Shalev-Shwartz, 2010). However, Elhamifar et al. (El-
hamifar et al., 2012) and later on Nellore et al. (Nellore
& Ward, 2013) proved that, when there exists clustering
assignments satisfying certain separation requirement (that
is, the dissimilarities within cluster are small enough com-
pared to the dissimilarities between clusters), the convex re-
laxation guarantees to find the optimal solution of its com-
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binatorial counterpart.

In this paper, we show that the theory for convex relaxation
of k-medoids also applies to a variety of Bayesian Non-
parametric models through connection to the MAD-Bayes
formulation. This results in an exemplar-based objective
with convex structural-regularized relaxation that guaran-
tees to recover the optimal solution under the separation
requirement.

The paper will be organized as follows. In Section 2, we
derive relaxation for the exemplar-based Dirichlet Process
(DP) and Hierarchical DP (HDP) mixture models under
MAD-Bayes formulation. Then in Section 3, we provide
sufficient conditions under which one can recover the op-
timal solution from the relaxation. In Section 4, an algo-
rithm based on Alternating Direction Method of Multiplier
(ADMM) is introduced to efficiently solve the convex pro-
gram. In Section 6, we experiment on several benchmark
data sets, for which the proposed approach recovers the
optimal solution of the combinatorial problem and signif-
icantly improves the objective achieved by existing meth-
ods.

2. Exemplar-Based MAD-Bayes
In this section, we derive convex relaxation for the
exemplar-based MAD-Bayes estimation of DP and HDP
mixture models.

2.1. Exemplar-based Dirichlet Process (DP) Mixture

Given a mixture model with DP prior p(z) and some ob-
servation distribution p(x|z) belonging to the exponential
family, the MAP inference of {zi}Ni=1 given observation
{xi}Ni=1 can be formulated via MAD-Bayes as

min
zi∈[K],µk∈Rp,K

N∑
i=1

D(xi,µzi) + λK (1)

by taking variance of p(x|z) asymptotically to 0, where
D(.) is Bregman divergence associated with the partition
function of p(x|z) (Kulis & Jordan, 2012; Broderick et al.,
2013; Jiang et al., 2012). For p(x|z) being Spherical Gaus-
sian, D(.) is simply the square Euclidian distance and
for p(x|z) being Multinouli distribution, D(.) is the KL-
divergence. Note that K in the formulation is also a vari-
able to optimize, which, as in the spirit of Bayesian Non-
parametrics, provides the flexibility to vary number of clus-
ters based on the supports from the data. In (Kulis & Jor-
dan, 2012), an algorithm analogous to k-means called DP-
means was proposed to solve (1) with Gaussian observation
distribution, which was then adopted and generalized in
(Jiang et al., 2012) to solve instances of exponential family
observation distribution, and improved in (Broderick et al.,
2013) using idea of collapsed sampling. However, none of

those algorithms provides guarantee for the quality of solu-
tion w.r.t. its objective.

Here we consider the exemplar-based version of (1), which
confines the optimization space of µk to a finite set of can-
didates (exemplars) E = {µ̄j}Jj=1 instead of the whole pa-
rameter space Rp. For mixture model a natural choice of E
is the sample set {xj}Nj=1 itself. The problem can then be
written as

min
wij∈{0,1}

N∑
i=1

J∑
j=1

wijD(xi, µ̄j) + λ

J∑
j=1

max
i∈[N ]

wij

s.t.

J∑
j=1

wij = 1,∀i.

(2)

where with wij ∈ {0, 1}, the term
∑J
j=1 maxi∈[N ] wij

simply counts number of exemplars j assigned to any sam-
ple i. In contrast to formulation (1) where D(xi,µj) must
be a Bregman Divergence so the minimization w.r.t. µj can
be carried out efficiently 1, the exemplar-based objective
(2) takes the advantage that D(xi, µ̄j) is a pre-computable
constant that can be any measure of dissimilarity. By re-
placing integer constraint wij ∈ {0, 1} with nonnegative
constraint wij ≥ 0, we obtain a convex problem of lin-
ear loss function, group-sparse regularization, and simplex
constraint:

min
W∈RN×J

+ :W1=1
D ◦W + λ‖W‖∞,1 (3)

where ◦ is the element-wise inner product, D is an N by
N matrix with Dij = D(xi, µ̄j), and 1 is J by 1 vector of
all elements equal to 1. Note without imposing additional
conditions, (3) might have fractional solutions. Before dis-
cussion of the recovery conditions, we first introduce HDP
mixture, a generalization of DP mixture when data come in
groups.

2.2. Exemplar-based Hierarchical Dirichlet Process
(HDP) Mixture

In a HDP mixture model, samples {xi}Ni=1 are grouped
into D data sets T1,..,TD, each of which is modeled as a
local DP mixture DP (α,G), while G is a base distribution
drawn from a global DP shared among all data sets. The
resulting MAD-Bayes estimation problem, as derived in
(Kulis & Jordan, 2012; Jiang et al., 2012), has two penalty
terms, one for the number of global clusters Kg and the

1 The fact that mean serves as minimizer of a sum of Bregman
Divergence w.r.t. the second parameter is used to derive the DP-
means algorithm.
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other for the number of clusters used by each data set Kd:

min
zi∈[Kg ],µk,Kg,Kd

N∑
i=1

D(xi,µzi) + θKl + λKg

s.t. Kl =

D∑
d=1

Kd

Kd = |{zi|i ∈ Td}| , d = 1, .., D.

(4)

where θ, λ are the hyper-parameters for local and global
penalty respectively. To obtain the exemplar-based version,
we constrain the space of µk to a finite candidate set E =
{µ̄j}Jj=1, so the problem can be written as

min
wij∈{0,1}

N∑
i=1

J∑
j=1

wijD(xi, µ̄j)

+ θ

D∑
d=1

J∑
j=1

max
i∈Td

wij + λ
J∑
j=1

max
i∈[N ]

wij

s.t.

J∑
j=1

wij = 1,∀i.

(5)

By replacing wij ∈ {0, 1} with wij ≥ 0, we obtain the
corresponding convex relaxation

min
W∈RN×J

D ◦W + θ‖W‖G + λ‖W‖∞,1

s.t. W � 0

W1 = 1

(6)

where ‖.‖G is a latent group norm (Obozinski et al., 2011)
defined by the collection of groups G = {gd,j |d ∈
[D], j ∈ [J ]}, with each group of indices defined as gd,j =
{(i, j)|i ∈ Td}.

3. Optimality Guarantee
In this section, we give conditions under which the con-
vex formulations (3), (6) share the same optimal solution
with its combinatorial counterparts (2), (5). In particu-
lar, we show that if there exists a clustering that satisfies
certain separation requirement, then it corresponds to an
unique optimal solutionW ∗ of both combinatorial and con-
vex formulations with some λ, θ. Note an integer solu-
tion W ∗ of (2), (5) corresponds to a clustering {Sk}k∈M,
where M = {j|∃i, w∗ij = 1} is the set of representa-
tive exemplars selected out of the candidate set E , and
Sk = {i|w∗ik = 1} is a set containing samples belonging
to cluster represented by exemplar k. We use M(i) to de-
note the representative i-th sample assigned to. Note each
representative k ∈M has minimal average dissimilarity to
∀i ∈ Sk. In the following, we will assume exemplar set E
to be the set of samples E = {xj}Nj=1. All proofs will be
included in appendix.

Theorem 1. Suppose there exists a clustering {Sk}k∈M
for which we can find λ such that

max
k∈M

max
i,j∈Sk

Nkδij < λ < min
(k,l∈M,k 6=l)

min
(i∈Sk,j∈Sl)

Nkδij

(7)
where Nk = |Sk| and δij = D(xi,xj) − D(xi,xM(i)),
then the integer solution W ∗ realizing {Sk}k∈M is unique
optimal solution to both (2) and (3).

Note that Theorem 1 is consistent with Corollary 7 given
by (Nellore & Ward, 2013), where the Lagrange multiplier
u in (Nellore & Ward, 2013) corresponds to our regulariza-
tion parameter λ. Since DP is a special case of HDP, the
proof for Theorem 1 is also a special case of that for The-
orem 2. When each cluster has same size, Theorem 1 sim-
ply states a separation condition that requires the dissim-
ilarity between points of different clusters, subtracted by
the dissimilarity to cluster representative, larger than that
between points in the same cluster. Intuitively, the separa-
tion condition is very reasonable. The fractional solution
can be viewed as assigning a data point to multiple clus-
ters. When clusters are separated with an enough distance,
it is not likely for a data point being assigned to multiple
clusters. When the measure of dissimilarity D(.) satisfies
triangular inequality, we can further simplify the result as
follows.

Corollary 1. Assuming D(·, ·) is a metric and Nk =
N/K,∀k ∈M, where K is the number of clusters, if there
exists some R such that for any i

D(xi,xM(i)) < R,

and for ∀i ∈ Sk,∀j ∈ Sl with k 6= l,

D(xi,xj) > 2R,

then the optimal solutions of (2) and (3) are identical.

Note that, according to condition (7), a clustering
{Sk}k∈M with larger extent of separation corresponds to
a larger range of λ. Solving (3) with this range of λ
leads to the solution {Sk}k∈M. One can further show that
‖W ∗‖∞,1 is a non-increasing function of λ, and solutions
with same ‖W ∗‖∞,1 must be the same. We have following
proposition independent of Theorem 1.

Proposition 1. For λ1 and λ2 with λ1 < λ2 and their
corresponding (unique) optimal solutions W ∗1 := W ∗(λ1)
andW ∗2 := W ∗(λ2), we have ‖W ∗1 ‖∞,1 ≥ ‖W ∗2 ‖∞,1, and
if ‖W ∗1 ‖∞,1 = ‖W ∗2 ‖∞,1, then W ∗1 = W ∗2 , and W ∗(λ) =
W ∗1 for any λ ∈ [λ1, λ2].

For HDP mixture problem (6), the analysis becomes more
involved, since the separation condition should be differ-
ent for samples coming from same data set and that from
different data sets.
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Figure 1. Examples of clustering described in Corollary 1 (left)
and Corollary 2 (right).

Theorem 2. Given a clustering {Sk}k∈M, denote Sk,d =
Sk ∩ Td, Dk = {d|Sk,d 6= φ}, and d(i) the index of data
set i belonging to. If we can find λ, θ such that, for ∀i, j ∈
Sk,∀k ∈M,

λ

Nk
+

θ

Nk,d(i)
> δij (8)

λ

Nk
>

1

Nk,d

∑
i∈Sk,d

δij , ∀d ∈ Dk (9)

and for ∀i ∈ Sk,∀j ∈ Sl 6=k,

λ

Nk
+

θ

Nk,d(i)
< δij , Dk ∩ Dl 6= φ (10)

λ

Nk
+ θ

(
1

Nk,d(i)
− 1

Nd(i)

)
< δij , Dk ∩ Dl = φ (11)

, where Nk = |Sk|, Nd = |Td|, and Nk,d = |Sk ∩ Td|,
then the integer solution W ∗ realizing {Sk}k∈M is unique
optimal solution to both (5) and (6).

For θ = 0, (10) and (11) are equivalent to the RHS of (7),
while (8) gives the LHS of (7) and implies (9), which then
gives the same condition as in Theorem 1. For θ > 0, in-
equality (11) requires less dissimilarity than that of inequal-
ity (10), which means the inter-cluster dissimilarity can be
smaller if two clusters do not share samples from the same
dataset. By tuning θ, the convex HDP formulation (6) can
utilize structure of datasets to realize clustering {Sk}k∈M
not realizable by the DP formulation (3). For D(., .) being
a metric, we can further simplify result as follows.

Corollary 2. Assuming D(·, ·) is a metric, Nk = N/K,
|Dk| = C is a constant, Nk,d = N/(CK) for all d ∈ Dk
and Kd = CK/D, then if there exists some R such that
(a) for ∀i,

D(xi,xM(i)) < R,

(b) for ∀i ∈ Sk,∀j ∈ Sl with k 6= l and Dk ∩ Dl 6= φ,

D(xi,xj) > 2R,

(c) for ∀i ∈ Sk,∀j ∈ Sl with k 6= l and Dk ∩ Dl = φ,

D(xi,xj) > 2R− r,

Algorithm 1 ADMM for exemplar-based HDP mixture (6)

Initialize t = 0, W (t) = Y (t) = Z(t) ← 0.
repeat

1. Solve each row of W (t+1)
1 in (12) via Frank-Wolfe

algorithm.
2. Solve each column of W (t+1)

2 in (13) via proximal
mapping.
3. Z(t+1) = (W

(t+1)
1 +W

(t+1)
2 )/2.

4. Y (t+1)
q ← Y

(t)
q +α(W

(t+1)
q −Z(t+1)), for q = 1, 2.

5. t = t+ 1.
until ‖Z(t) − Z(t−1)‖ < ε1 and ‖W (t)

1 −W (t)
2 ‖ < ε2

where

r =
1

Kd

R− max
k∈M,j∈Sk,d∈Dk

1

Nk,d

∑
i∈Sk,d

δij


then the optimal solutions of (5) and (6) are identical.

Figure 1 gives two examples that compare conditions of
Corollary 1 and 2. For HDP, we also show in the follow-
ing that ‖W ∗‖∞,1, ‖W ∗‖G are monotonically decreasing
with λ, θ respectively, and the optimal solutions in some
triangular area of the (λ, θ) parameter space are the same if
the corners of the triangular area lead to the same values of
‖W ∗‖∞,1, ‖W ∗‖G .

Proposition 2. ‖W ∗‖∞,1, ‖W ∗‖G are monotonically de-
creasing with λ, θ respectively, and for regularization pa-
rameters (λ1, θ1), (λ1, θ2) and (λ2, θ2) with λ1 < λ2
and θ1 < θ2, define their corresponding optimal solutions
W ∗1 := W ∗(λ1, θ1), W ∗12 := W ∗(λ1, θ2) and W ∗2 :=
W ∗(λ2, θ2). Assuming unique optimal solution, then if

‖W ∗1 ‖G = ‖W ∗12‖G and ‖W ∗2 ‖∞,1 = ‖W ∗12‖∞,1,

we have W ∗1 = W ∗12 = W ∗2 and furthermore for any

(λ, θ) ∈ Conv ((λ1, θ1), (λ1, θ2), (λ2, θ2))

the corresponding optimal solution

W ∗(λ, θ) = W ∗1 ,

where Conv(·) is the convex hull function.

4. Algorithm
In this section, we propose an algorithm based on ADMM
(Alternating Direction Method of Multiplier) to solve the
convex formulation of exemplar-based HDP mixture (6).
The exemplar-based DP mixture (3) can be solved via
the same algorithm by setting θ = 0 and ignoring any
group structure imposed by data sets. Each iteration of the
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ADMM algorithm decomposes (6) into two sub-problems
with augmented terms:

W
(t+1)
1 = argmin

W∈RN×J
+ :W1=1

D ◦W + Y
(t)
1 ◦W

+
ρ

2
‖W − Z(t)‖2

(12)

and

W
(t+1)
2 = argmin

W∈RN×J
+

θ‖W‖G + λ‖W‖∞,1 + Y
(t)
2 ◦W

+
ρ

2
‖W − Z(t)‖2

(13)

where Z(t) is a global consensus variable, and Y (t)
1 , Y (t)

2

are dual variables for constraints W1 = Z, W2 = Z re-
spectively 2. The two sub-problems are relatively easy to
solve, since each row of W in (12) can be solved indepen-
dently, and so as each column of W in (13). For each row
of W in (12), we solve with a Frank-Wolfe algorithm spe-
cialized for simplex constraint (Jaggi, 2013), while for each
column ofW in (13), we solve with a closed-form proximal
mapping. Since each group g ∈ G is a subset of a column
of W , the proximal mapping prox(.) for each column of
(13) can be decomposed as prox(.) = proxλ(proxθ(.)),
where proxλ(.) is the proximal-mapping for λ‖W‖∞,1
and proxθ(.) is the that for θ‖W‖G , both of which can
be computed in closed form as in (Liu et al., 2009). The
overall algorithm 1 has following convergence guarantee.

Theorem 3. Let f(W ) denotes the objective function of
(6). Provided that α is sufficiently small, the sequence
{f(W (t))}∞t=0 produced by Algorithm 1 converges to op-
timum f∗ at a linear rate. In other words,

t ≥ c1 log(c2/ε)

iterations suffice to guarantee f(W (t)) − f∗ ≤ ε and ε-
infeasibility for some constants c1, c2 independent of t.

Since D ◦W and ‖W‖∞,1, ‖W‖G are all polyhedral func-
tions, Theorem 3 simply follows from Theorem 3.1 of
(Hong & Luo, 2012).

5. Practical Issues
In this section, we discusses some implementation details
and practical issues.

5.1. Solution Optimality and Perturbation

Whenever an integer optimal solution W ∗ is obtained from
the convex relaxation, it is also optimal to the combinatorial

2 More details about deriving the ADMM sub-problems can
be found in, for example, (Boyd et al., 2011).

problem. However, if there are multiple optimal solutions
W ∗1 ,W

∗
2 , ...W

∗
M in the original problem (5), any fractional

convex combination of them would also be optimal in the
convex relaxation (6). One simple approach resolving this
issue is to add a small perturbation to the matrix D. Since in
the combinatorial problem (5), function difference between
optimal and sub-optimal solutions can be lower bounded by
a finite constant, there exists small enough perturbation that
makes one of the solutions become uniquely optimal.

5.2. Shrinking

Since many columns ofW become 0 when iterateW (t) be-
comes close to optimum. We employ a Shrinking technique
to shrink inactive columns of W that have primal and dual
residual both equal, or close, to 0, that is, we shrink column
j if

‖Z(t)
i,j − Z

(t−1)
i,j ‖ ≈ 0 and ‖W (t)

1i,j −W
(t)
2i,j‖ ≈ 0, ∀i.

The shrinked column will be set to 0 and never updated
until stopping condition holds for all the other columns.
Then we will check optimality of those shrinked columns
and re-iterates if optimality does not hold. In practice, the
technique reduces complexity for most iterations of Algo-
rithm 1 from O(N2) to O(NK+), where K+ � N is the
number of active columns.

5.3. Solving Subproblem Inexactly

The convergence of the ADMM algorithm does not require
solving each subproblem exactly (Boyd et al., 2011; Hong
& Luo, 2012). In practice, solving subproblem (12) by only
a few iterations of Frank-Wolfe algorithm results in faster
convergence. In our experiment, we fix maximum number
of Frank-Wolfe iterations to 30.

5.4. Model Selection

One arguable advantage of Bayesian Nonparametrics is not
fixing number of clusters K before learning, which how-
ever, comes with additional parameters λ. In practice,
whether one way is better than the other depends on the
prior knowledge one has. For some applications, the de-
sired number of clusters is known a priori, and thus fixing
K before training would be preferred. However, for situa-
tions where HDP applies, one can hardly expect how many
local clusters each data set should have, and a single param-
eter θ, that encodes the additional loss reduction one should
achieve to create a new local cluster, is preferred. As stated
in Section 3, the parameters that result in the same optimal
solution W ∗ form a convex region of parameters (a band
of λ in case of DP mixture), and the larger extent of sepa-
ration a clustering {Sk}k∈M achieves in Theorem 1, 2, the
larger the convex region. In practice, a clustering with bet-
ter separation can be found in a wider range of parameters.
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6. Experiment
In this section, we compare the convex, exemplar-based ap-
proach with existing approaches to MAD-Bayes DP mix-
ture (1) and HDP mixture (4) on several public available
data sets. We use square Euclidean distance as measure
of dissimilarity D(., .) so the compared algorithms are ap-
plicable (Kulis & Jordan, 2012; Jiang et al., 2012). The
algorithms in comparison are listed as follows.

• DP-means exactly implements the k-means like algo-
rithm proposed in (Kulis & Jordan, 2012) for the DP
objective (1). Since the algorithm gives different re-
sult for different order of updating {z(t)i }Ni=1, we run
the algorithm for 1000 rounds with random permu-
tation on the updating in order to achieve better lo-
cal optimum. Global mean is used as initialization as
specified in (Kulis & Jordan, 2012).

• DP-medoids applies the DP-means algorithm to the
exemplar-based objective function (2). Since (2) is a
special case of (1) that restricts the space ofµk to a set
of exemplar E , the resulting algorithm simply replaces
the step of computing mean of cluster Sk by picking
exemplar µj ∈ E of smallest dissimilarity to points in
Sk.

• DP-convex solves (3) using Algorithm 1 with θ = 0.

• DP-convex (means) takes clustering assignments ob-
tained from DP-convex, and compute means of each
cluster Sk as the representative for i ∈ Sk.

• HDP-means exactly implements the algorithm pro-
posed in (Kulis & Jordan, 2012) for the HDP objective
(4). As in DP-means, we run the algorithm for 1000
rounds with different random permutation of updating
order to achieve better local optimum. Global mean is
used as initialization as specified in (Kulis & Jordan,
2012).

• HDP-medoids applies the HDP-means algorithm to
the exemplar-based objective function (5). Similar to
DP-medoids, the algorithm simply replaces the step
of computing mean w.r.t. a set of points S by picking
exemplar µj ∈ E of smallest dissimilarity to points in
S.

• HDP-convex solves (6) using Algorithm 1.

• HDP-convex (means) takes clustering assignments ob-
tained from HDP-convex, and compute means of each
global cluster Sk as the representative for i ∈ Sk.

Our experiments for DP mixture model are conducted on
5 publicly available data sets: Iris, Glass, Wine, DNA

Table 1. Data sets employed in our experiments and their relevant
statistics.

Dataset N D Mean-Dist Std-Dist
Iris 150 4 2.1940 2.1475

Wine 178 13 4.2966 2.4209
Glass 214 9 2.1445 2.2049
DNA 2000 180 67.1564 7.2841

Segment 2310 19 6.3195 5.5270
Wholesale 440 6 0.4220 0.3444

Water 527 38 1.6073 1.5893

and Segment. For HDP mixture model, we experiment on
Wholesale and Water data sets. The Wholesale data com-
prises the spending of customers from different regions and
channels. We divide samples in Wholesale into 6 groups
T1, ..., T6 based on region and channel. The Water data
contains the daily measures of sensors in a urban waste
water treatment plant. The data set is divided into 21
groups according to the month. For each group, we ex-
pect a smaller number of clusters than that appear across
all groups. All of the data sets can be downloaded from
UCI Machine Learning Repository

Figure 2 and 3 illustrate the sampled regularization path ob-
tained from DP-convex on five data sets. For each data set,
we observed several bands of λ that give integer (and thus
optimal) solutions. Each band corresponds to a clustering
assignment {Sk}k∈M. Note there are several integer solu-
tions marked by square mark ’�’ that has a band shorter
than our sampled interval, which corresponds to clustering
with small extent of separation and is usually not preferred
in model selection. In Figure 4, we present the number of
global clusters Kg and total number of local clusters Kl

obtained from HDP-convex under different (λ, θ) pairs of
parameter. Note for fractional solution, Kg = ‖W ∗‖∞,1
and Kl = ‖W ∗‖G , and integer solutions are marked with
’�’.

In Table 2, we pick λ within a band in Figure 3 and Fig-
ure 2 for each data set, and compare the objective obtained
from convex approach to existing approaches (Kulis & Jor-
dan, 2012; Jiang et al., 2012) with 1000 random re-trials.
Note that, for the same clustering, using mean as represen-
tative should always get lower objective than using medoid
as representative since mean is the minimizer of square Eu-
clidean distance. However, the result shows that the opti-
mal medoids obtained from convex approach still achieves
significantly lower objective than clustering found by local
search method.

In addition, we observe that the number of clusters obtained
from local methods are consistently smaller. The reason
behind this is, the DP-means algorithm proposed in (Kulis
& Jordan, 2012; Jiang et al., 2012) creates a new cluster
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Figure 2. Number of clustersK = ‖W ∗‖∞,1 vs. λ obtained from
DP-convex, where each � denotes an integer solution and a hor-
izontal line between contiguous � shows band of λ yielding the
same integer solution.

only when a single observation has square distance to its
representative more than λ. However, it is often the case
that only moving several points together to a new cluster
can make a loss reduction more than λ. In that case, DP-
means can easily get stuck at local minimum. For the data
set Wine, the algorithm gets stuck even at initialization.

Figure 5 shows the lowest objective achieved by differ-
ent methods over time. Generally, a single run of DP-
means, HDP-means or their exemplar-based version con-
verges much faster than the ADMM algorithm. However,
even with large number of random re-trials, the objective
achieved by local search methods could hard improve sig-
nificantly. For Wine and Glass data set, all random retrials
of DP-means and DP-medoids get stuck at the same local
minimum.

Conclusion. In this paper, we show that the MAD-Bayes
formulation for DP and HDP mixture models can be nat-
urally relaxed to a convex domain in the exemplar-based
setting, which is tight under cluster-separation condition.
Similar convex formulation can be derived for more in-
teresting applications such as Latent Feature Allocation
(Broderick et al., 2013), Infinite Hidden Markov Mod-
els (Roychowdhury et al., 2013), and applications where
exemplar comes in naturally, such as Multiple Sequence
Alignment and Motif Finding. This will be an active re-
search direction for us in the near future.
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Figure 3. More results of K v.s. λ obtained from DP-convex pro-
gram. Note that each � denotes an integer solution and a horizon-
tal line between contiguous � shows band of λ yielding the same
integer solution.
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Figure 4. Number of global and local clusters obtained from
HDP-convex, where each ’�’ denotes an integer solution. (a)
Kg = ‖W ∗‖∞,1, the number of global clusters in HDP. (b)
Kl = ‖W ∗‖G , the total number of local clusters for HDP.
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Table 2. Objective value obtained from different methods, where DP-convex (means) uses mean instead of medoid as representative of
each cluster Sk obtained from W ∗.

Data set DP-convex DP-convex (means) DP-medoids DP-means
Iris (λ = 2) 29.26 (K=7) 27.97 (K=7) 35.68 (K=3) 30.20 (K=4)

Glass (λ = 9) 137.40 (K=6) 128.13 (K=6) 175.42 (K=2) 154.66 (K=2)
Wine (λ = 20) 298.55 (K=4) 263.79 (K=4) 512.04 (K=1) 402.40 (K=1)

DNA (λ = 1000) 105947.0 (K=2) 68718.9 (K=2) 107211(K=1) 68156.4 (K=1)
Segment (λ = 600) 4749.62 (K=4) 4572.3 (K=4) 8405.71(K=1) 7898.98 (K=1)

Data set HDP-convex HDP-convex (means) HDP-medoids HDP-means
Wholesale 56.28 53.07 83.35 79.52

(λ = 1.0, θ = 1.0) (Kg=5, Kl=16) (Kg=5, Kl=16) (Kg = 2, Kl = 6) (Kg=2, Kl = 6)
Water 244.59 232.07 256.41 237.73

(λ = 1.0, θ = 1.0) (Kg=32, Kl=81) (Kg=34, Kl=83) (Kg=33, Kl=74) (Kg=37, Kl=64)
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Figure 5. Objective v.s. Time (in seconds). (a)-(c) show the lowest objective achieved by DP-convex, DP-means and DP-medoids over
time on three data sets: (a) Iris. (b) Glass (c) Wine. Note we run DP-means and DP-medoids for 1000 rounds with random permutation
on the updating order. (d) Running Time Comparison between HDP-convex, HDP-means and HDP-medoids on the Wholesale data set.
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A. Notation
N = {1, 2, ..., N} =: [N ] is the whole set of data points. i, j ∈ N denote points. dij := D(xi,xj). D is the number of
data sets. Td ⊆ N denotes the set of points in the d-th dataset, i.e. ∪Dd=1Td = N . Nd = |Td| is the number of points in
Dataset d. d(i) ∈ [D] denotes the dataset index of Point i. M ⊆ N is the set of medoids. k, l ∈ M denote clusters and
themselves are medoids. Sk is the set of points in Cluster k. Nk = |Sk| is the number of points in Cluster k. M(i) ∈ M
denotes the cluster/representative of Point i. Let Dk ⊆ [D] denote the data sets contained or partially contained in Cluster
k. Denote Sk,d := Sk ∩ Td for d ∈ Dk. Thus ∪d∈Dk

Sk,d = Sk. Denote Nk,d := |Sk,d| for d ∈ Dk.

B. Proof of Theorem 1
Theorem 1 is a direct corollary of Theorem 2, by setting θ = 0.

C. Proof of Theorem 2
First, the convex program (6) has same set of optimal solutions with the following linear program

min
wij≥0,ζd,j ,ξj

N∑
i=1

N∑
j=1

dijwij + θ

D∑
d=1

N∑
j=1

ζd,j + λ

N∑
j=1

ξj

s.t.

N∑
j=1

wij = 1

wij ≤ ζd,j , ∀i ∈ Td
wij ≤ ξj , ∀i ∈ [N ].

(14)

The KKT condition of the linear programming can be written as

dij − αij − βi + γij + δij = 0 (15)

θ =
∑
i∈Td

δij (16)

λ =
∑
i

γij (17)

δij(wij − ζdj) = 0 (18)
γij(wij − ξj) = 0 (19)
αijwij = 0 (20)
αij ≥ 0 (21)
γij ≥ 0 (22)
δij ≥ 0. (23)

Our goal is to find a structure of dij , for which there exists a set of αij , βi, γij , δij , θ and λ satisfying the above conditions
(with αij , γij , δij strictly positive for binding constraints). Then a clustering {Sk}k∈M with such structure will be an
unique solution to (14). We will discuss the cases entry-by-entry.

C.1. ξj = 1, ζdj = 1, wij = 1

j = M(i), αi,M(i) = 0
γi,M(i) + δi,M(i) = βi − di,M(i), ∀i (24)

C.2. ξj = 1, ζdj = 1, wij = 0

j ∈M, but j 6= M(i)
δij = 0, γij = 0⇒ αij = dij − βi > 0, i.e.,

βi < dij , ∀j ∈M but j 6= M(i) and Dj ∩ DM(i) 6= φ. (25)
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Summary of Section C.1 and C.2
We can set γi,M(i) = λ

NM(i)
such that Eq. (17) holds and δi,M(i) = θ

NM(i),d(i)
such that Eq. (16) holds. Thus,

βi =
λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) (26)

C.3. ξj = 1, ζdj = 0, wij = 0

j ∈M, but j 6= M(i)
γij = 0⇒ αij = dij − βi + δij > 0. Now we have

δij > βi − dij
δij > 0

Thus
θ =

∑
i∈Td

δij >
∑
i∈Td

(βi − dij)+, ∀d /∈ Dj , j ∈M (27)

If we set βi − dij < θ
Nd(i)

, Eq. (27) will be satisfied. That is

λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) − dij <

θ

Nd(i)
(28)

C.4. ξj = 0, ζdj = 0, wij = 0

In this case, we have αij = dij − βi + δij + γij > 0, that is,

γij > βi − dij − δij (29)

λ =
∑
i

γij >
∑
i

(βi − dij − δij)+, ∀j /∈M (30)

θ =
∑
i∈Td

δij , ∀d ∈ [D],∀j /∈M (31)

To analyze this case, we divide i ∈ [N ] into three parts. The first part is the points in the same cluster as j denoted by
SM(j). The second part is the points who have sister points (sister points mean they belong to the same dataset) in SM(j)

but themselves are not in SM(j), denoted by S1,M(j) :=
(
∪d∈DM(j)

Td
)
\ SM(j). The third part is all the points who don’t

have sister points in SM(j), denoted by S2,M(j) := ∪d∈[D]\DM(j)
Td

λ >
∑

i∈SM(j)

(βi − dij − δij)+

+
∑

i∈S1,M(j)

(βi − dij − δij)+

+
∑

i∈S2,M(j)

(βi − dij − δij)+

(32)

In the following we will show our strategy to make this inequality hold.
If we set δij to be

θ =

 ∑
i∈SM(j),d

δij

 , ∀d ∈ DM(j),∀j /∈M (33)

δij = 0, ∀i ∈ S1,M(j),∀j /∈M (34)

δij =
θ

Nd(i)
, ∀i ∈ S2,M(j),∀j /∈M (35)
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such that Eq. (16) is satisfied.
Further more, if we can get the following equations satisfied,

βi − dij − δij ≥ 0, ∀i ∈ SM(j)

βi − dij − δij < 0, ∀i ∈ S1,M(j)

βi − dij − δij < 0, ∀i ∈ S2,M(j)

(36)

the only thing we need to show is

λ >
∑

i∈SM(j)

(βi − dij − δij)

=
∑

i∈SM(j)

(
λ

NM(i)
+ di,M(i) − dij)

It is equivalent to ∑
i∈SM(j)

di,M(i) <
∑

i∈SM(j)

dij ,

which is satisfied by medoid definition.
In the following, we analyze the conditions under which the three inequalities of Eq. (36) hold.

First part i ∈ SM(j) In this part we try to let βi − dij − δij ≥ 0. As δij > 0, we require

βi − dij > 0, ∀i ∈ SM(j)

That is, for ∀i, j s.t. M(i) = M(j),
λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) > dij , (37)

Then we can always find a δij such that 0 < δij < βi − dij . To satisfy Eq. (33), we require

θ <
∑
i∈Sk,d

βi − dij , ∀d ∈ Dk, k = M(j)

Equivalently, we have

λ >
Nk
Nk,d

∑
i∈Sk,d

dij − di,M(i), ∀d ∈ Dk,∀j ∈ Sk,∀k (38)

Second part i ∈ S1,M(j) As set in Eq. (34), δij = 0, we require

βi − dij < 0, ∀i ∈ S1,M(j)

That is, for ∀i, j s.t. DM(i) ∩ DM(j) 6= φ and M(i) 6= M(j)

λ

NM(i)
+

θ

NM(i),d(i)
+ di,M(i) < dij . (39)

This requirement also implies Eq. (25) will hold.

Third part i ∈ S2,M(j) For this part,

βi − dij <
θ

Nd(i)
, ∀i ∈ S2,M(j)

That is, for ∀i, j s.t. DM(i) ∩ DM(j) = φ,

λ

NM(i)
+ θ

(
1

NM(i),d(i)
− 1

Nd(i)

)
+ di,M(i) < dij , (40)

This requirement also implies Eq. (28) will hold. �
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D. Proof of Proposition 1
Given the conditions in the proposition, we have

D ◦W ∗1 + λ1‖W ∗1 ‖∞,1
≤ D ◦W ∗2 + λ1‖W ∗2 ‖∞,1
< D ◦W ∗2 + λ2‖W ∗2 ‖∞,1
≤ D ◦W ∗1 + λ2‖W ∗1 ‖∞,1

(41)

So we have

D ◦W ∗1 ≤ D ◦W ∗2
D ◦W ∗2 ≤ D ◦W ∗1

And under the unique optimum assumption, we have W ∗1 = W ∗2 .
For the rest of the proof, we first prove that ‖W ∗(λ)‖∞,1 is a non-increasing function. From Eq. (41),

λ2‖W ∗2 ‖∞,1 − λ1‖W ∗2 ‖∞,1 ≤ λ2‖W ∗1 ‖∞,1 − λ1‖W ∗1 ‖∞,1

that is,
(λ2 − λ1)(‖W ∗2 ‖∞,1 − ‖W ∗1 ‖∞,1) ≤ 0

Therefore, for any λ1 < λ2, we have ‖W ∗2 ‖∞,1 ≤ ‖W ∗1 ‖∞,1. Now for any λ ∈ [λ1, λ2], because ‖W ∗(λ1)‖∞,1 =
‖W ∗(λ2)‖∞,1, we have ‖W ∗(λ)‖∞,1 = ‖W ∗1 ‖∞,1, and further under the unique optimum assumption,

W ∗(λ) = W ∗1

�

E. Proof of Proposition 2
According to Proposition 1, given ‖W ∗1 ‖G = ‖W ∗12‖G , we have W ∗1 = W ∗12 and for any θ ∈ [θ1, θ2], W ∗(λ1, θ) = W ∗12.
Given ‖W ∗2 ‖∞,1 = ‖W ∗12‖∞,1, we have, for any λ ∈ [λ1, λ2], W ∗(λ, θ2) = W ∗12.
Now we prove for any (λ, θ) on the line between point (λ1, θ1) and point (λ2, θ2) (defined by L12), W ∗(λ, θ) = W ∗1 . We
can write

(λ, θ) = (1− α)(λ1, θ1) + α(λ2, θ2)

= (λ1 + α(λ2 − λ1), θ1 + α(θ2 − θ1))
(42)

where α ∈ [0, 1].
Define

f(α,W ) =D ◦W + θ1‖W‖G + λ1‖W‖∞,1
+ α ((θ2 − θ1)‖W‖G + (λ2 − λ1)‖W‖∞,1)

If we see (θ2 − θ1)‖W‖G + (λ2 − λ1)‖W‖∞,1 as the new regularization term, according to Proposition 1 and
argminW f(0,W ) = argminW f(1,W ), we have for any α ∈ [0, 1], argminW f(α,W ) = W ∗1 .
So now we proved that the optimal solutions corresponding to the regularization parameters on the line L12 are identical.
For any

(λ, θ) ∈ Conv ((λ1, θ1), (λ1, θ2), (λ2, θ2)) ,

we can find two points: one isA := (λ, θ2) on the line between point (λ1, θ2) and (λ2, θ2); the other isB := (λ, λ2−λ
λ2−λ1

θ1+
λ−λ1

λ2−λ1
θ2) which is on the line L12. Similarly, we obtain that the optimal solutions corresponding to any points on the line

between points A and B are identical. Therefore, we finish the proof. �


