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1 Proof of Lemma 1

Lemma 1. Suppose loss function L(z, y) has β-Lipchitz-continuous derivative and |ϕh(x)| ≤
B,∀h ∈ H,∀x ∈ X . The loss term Loss(w̄;ϕ) = 1

N

∑N
n=1 L(⟨w̄,ϕ(xn)⟩, yn) in (9) has

Loss(w̄ + ηδh;ϕ)− Loss(w̄;ϕ) ≤ ghη +
γ

2
η2

, where δh = δ(∥x− h∥) is a Dirac function centered at h, gh = ∇w̄Loss(w̄;ϕ)(h) is the Frechet
derivative of loss term evaluated at h, and γ = βB2.

Proof. For a loss function of β-Lipchitz-continuous derivative, we have

L(z + d, y)− L(z, y) ≤ L′(z, y)d+
β

2
d2 (1)

. For w̄ + ηδh, we have z + d = ⟨w̄,ϕ(xn)⟩ + ηϕh(xn). Substitute it into (1), average over n,
apply the bound |ϕh(xn)| ≤ B, and the result follows.

2 Proof of Corollary 1

Corollary 1 (Approximation Guarantee). The output of Algorithm 1 has

E
[
λ∥w̄(D)∥1 + Loss(w̄(D);ϕ)

]
≤

{
λ∥w∗∥2 + Loss(w∗; ϕ̄)

}
+

2γ∥w∗∥22
D′ (2)

with D′ = max{D − c, 0}, where w∗ is the optimal solution of problem (7), c is a constant defined
in Theorem 2.

Proof. Plug wref = w∗ into (18), we have

E[F̄ (w(D))] ≤ λ∥√p ◦w∗∥1 + Loss(w∗; ϕ̄) +
2γ∥w∗∥2

D′ , (3)

where

∥√p ◦w∗∥1 =

∫
h∈H

√
p(h)|w∗(h)|dh ≤

√∫
h∈H

p(h)dh

√∫
h∈H

w∗(h)2dh = ∥w∗∥2 (4)

by Cauchy-Schwarz inequality and the fact probability distribution sums to 1.
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3 Proof of Corollary 2

Corollary 2. The bound (25) holds for any R ≥ 1 in Algorithm 1, where if there are T iterations
then D = TR.

Proof. We have proved the case when R = 1. To prove bound (25) for R > 1, we simply show
that Algorithm 1 achieves larger descent amount if R > 1. Suppose current solution and working
set are w̄t, A(t). Let w̄t+R

1 , A(t+R)
1 be solution and working set obtained from running Algorithm

1 for R more iterations, each with 1 feature drawn, and let w̄t+1
R , A(t+1)

R be those obtained from
running 1 iteration of Algorithm 1 with R features drawn. From step 4 of Algorithm 1, we have
A

(t+R)
1 ⊆ A

(t+1)
R , and therefore F (w̄t+1

R ) ≤ F (w̄t+R
1 ) following step 3.
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