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Abstract

Time series data analytics has been a prob-
lem of substantial interests for decades, and
Dynamic Time Warping (DTW) has been the
most widely adopted technique to measure
dissimilarity between time series. A number
of global-alignment kernels have since been
proposed in the spirit of DTW to extend
its use to kernel-based estimation method
such as support vector machine. However,
those kernels suffer from diagonal dominance
of the Gram matrix and a quadratic com-
plexity w.r.t. the sample size. In this work,
we study a family of alignment-aware posi-
tive definite (p.d.) kernels, with its feature
embedding given by a distribution of Ran-
dom Warping Series (RWS). The proposed
kernel does not suffer from the issue of di-
agonal dominance while naturally enjoys a
Random Features (RF) approximation, which
reduces the computational complexity of ex-
isting DTW-based techniques from quadratic
to linear in terms of both the number and
the length of time-series. We also study the
convergence of the RF approximation for the
domain of time series of unbounded length.
Our extensive experiments on 16 benchmark
datasets demonstrate that RWS outperforms
or matches state-of-the-art classification and
clustering methods in both accuracy and com-
putational time.
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1 Introduction

Over the last two decades, time series classification and
clustering have received considerable interests in many
applications such as genomic research [Leslie et al.,
2002], image alignment [Peng et al., 2015b,a], speech
recognition [Cuturi et al., 2007, Shimodaira et al., 2001],
and motion detection [Li and Prakash, 2011]. One of
the main challenges in time series data stems from the
fact that there are no explicit features in sequences
[Xing et al., 2010]. Therefore, a number of feature
representation methods have been proposed recently,
among which the approaches deriving features from
phase dependent intervals [Deng et al., 2013, Baydo-
gan et al., 2013], phase independent shapelets [Ye and
Keogh, 2009, Rakthanmanon and Keogh, 2013], and
dictionary based bags of patterns [Senin and Malinchik,
2013, Schäfer, 2015] have gained much popularity due
to their highly competitive performance [Bagnall et al.,
2016]. However, since the aforementioned approaches
only consider the local patterns rather than global
properties, the effectiveness of these features largely
depends on the underlying characteristics of sequences
that may vary significantly across applications. More
importantly, these approaches may typically not be a
good first choice for large scale time series due to their
quadratic complexity in terms both of the number N
and (or) length L of time series.

Another family of research defines a distance function
to measure the similarity between a pair of time series.
Although Euclidean distance is a widely used option
and has been shown to be competitive with other more
complex similarity measures [Wang et al., 2013], various
elastic distance measures designed to address the tem-
poral dynamics and time shifts are more appropriate
[Xing et al., 2010, Kate, 2016]. Among them, dynamic
time warping (DTW) [Berndt and Clifford, 1994] is
the standard elastic distance measure for time series.
Interestingly, an 1NN classifier with DTW has been



Random Warping Series: A Random Features Method for Time-Series Embedding

demonstrated as the gold standard benchmark, and has
been proved difficult to beat consistently [Wang et al.,
2013, Bagnall et al., 2016]. Recently, a thread of re-
search has attempted to directly use the pair-wise DTW
distance as features [Hayashi et al., 2005, Gudmunds-
son et al., 2008, Kate, 2016, Lei et al., 2017]. However,
the majority of these approaches have quadratic com-
plexity in both number and length of time series in
terms of the computation and memory requirements.

Despite the successes of various explicit feature de-
sign, kernel methods have great promise for learning
non-linear models by implicitly transforming a simple
representations into a high-dimension feature space
[Rahimi and Recht, 2007, Chen et al., 2016, Wu et al.,
2016, Yen et al., 2014]. The main obstacle for applying
kernel method to time series is largely due to two dis-
tinct characteristics of time series, (a) variable length;
and (b) dynamic time scaling and shifts. Since elastic
distance measures, such as DTW, take into account
these two issues, there have been several attempts
to apply DTW directly as a similarity measure in a
kernel-based classification model [Shimodaira et al.,
2001, Gudmundsson et al., 2008]. Unfortunately, the
DTW distance does not correspond to a valid positive-
definite (p.d.) kernel and thus direct use of DTW leads
to an indefinite kernel matrix that neither corresponds
to a loss minimization problem nor giving a convex
optimization problem [Bahlmann et al., 2002, Cuturi
et al., 2007]. To overcome these difficulties, a family of
global alignment kernels have been proposed by taking
softmax over all possible alignments in DTW to give a
p.d. kernel [Cuturi et al., 2007, Cuturi, 2011, Marteau
and Gibet, 2015]. However, the effectiveness of the
global alignment kernels is impaired by the diagonal
dominance of the resulting kernel matrix. Also, the
quadratic complexity in both the number and length
of time series make it hard to scale.

In this paper, inspired by the latest advancement of
kernel learning methodology from distance [Wu et al.,
2018], we study Random Warping Series (RWS), a
generic framework to generate vector representation of
time-series, where we construct a family of p.d. kernels
from an explicit feature map given by the DTW be-
tween original time series and a distribution of random
series. To admit an efficient computation of the kernel,
we give a random features approximation that uni-
formly converges to the proposed kernel using a finite
number of random series drawn from the distribution.
The RWS technique is fully parallelizable, and highly
extensible in the sense that the building block DTW
can be replaced by recently proposed elastic distance
measures such as CID [Batista et al., 2014] and DTDC
[Górecki and Łuczak, 2014]. With a number R of ran-
dom series, RWS can substantially reduce the compu-

tational complexity of existing DTW-based techniques
from O(N2L2) to O(NRL) and memory consumption
from O(NL+N2) to O(NR). We also extend existing
analysis of random features to handle time series of
unbounded length, showing that R = Ω(1/ε2) suffices
for the uniform convergence to ε precision of the exact
kernel. We evaluate RWS on 16 real-world datasets on
which it consistently outperforms or matches state-of-
the-art baselines in terms of both testing accuracy and
runtime. In particular, RWS often achieves orders-of-
magnitude speedup over other methods to achieve the
same accuracy.

2 DTW and Global Alignment
Kernels

We first introduce the widely-used technique DTW
and nearest-neighbor DTW (1NN-DTW), and then
illustrate the existing global alignment kernels for time
series and their disadvantages.

Time Series Alignment and 1NN-DTW. Let X
be the domain of input time series, and {xi}Ni=1 be
the set of time series, where the length of each time
series |xi| ≤ L, taking numeric values in R. A spe-
cial challenge in time series lies in the fact that the
series could have different lengths, and a signal could
be generated with time shifts and different scales, but
with a similar pattern. To take these factors into ac-
count, an alignment (also called a warping function) is
often introduced to provide a better distance/similarity
measure between two time series xi = (x1i , . . . , x

n
i ) and

xj = (x1j , . . . , x
m
j ) of lengths n and m respectively.

Specifically, an alignment a = (a1, a2) of length |a| = p
between two time series xi and xj is a pair of increasing
vectors (a1, a2) such that 1 = a1(1) ≤ . . . ≤ a1(p) = n
and 1 = a2(1) ≤ . . . ≤ a2(p) = m with unitary incre-
ments and no simultaneous repetitions. The set of all
alignments between xi and xj is defined as A(xi, xj).
In the literature of DTW [Berndt and Clifford, 1994],
the DTW distance between xi and xj is defined as
follows in its simplest form:

S(xi, xj) = min
a∈A(xi,xj)

τ(xi, xj ; a),

where τ(xi, xj ; a) =

|a|∑
t=1

τ(xi(a1(t)), xj(a2(t))).
(1)

Here τ(xi, xj ; a) is a dissimilarity measure between
xi and xj under alignment a. Typically, Dynamic
Programming (DP) is employed to find the optimal
alignment a∗ and then compute DTW distance. The
dissimilarity function τ could be defined as any com-
monly used distance such as the squared Euclidean
distance. To accelerate the computation and improve
the performance, a Sakoe and Chiba band is often used



Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi

to constrain the search window size for DTW [Sakoe
and Chiba, 1978, Rakthanmanon et al., 2012].

DTW has been widely used for time series classifica-
tion in combination with the 1NN algorithm, and this
combination has been shown to be exceptionally diffi-
cult to beat [Wang et al., 2013, Bagnall et al., 2016].
However, there are two disadvantages of 1NN-DTW.
First, this method incurs the high computational cost
of O(N2) complexity for computing DTW similarity
between all pairs of time series, where each evaluation
of DTW without constraints takes O(L2) computation.
Second, Nearest-Neighbor methods often suffers from
the problems of high variance. For example, if a class
label is determined by a small portion of time series, a
Nearest-Neighbor identification on the basis of similar-
ity with the whole time series will be ineffective due to
noise and irrelevant information.

Existing Global Alignment Kernels. To take the
advantage of DTW in other prediction methods based
on Empirical Risk Minimization (ERM) such as SVM
and Logistic Regression, a thread of research has been
trying to derive a valid p.d. kernel that resembles
S(xi, xj). A framework for designing such kernel is the
time series global-alignment kernel proposed in [Cuturi
et al., 2007] and further explored in [Cuturi, 2011].
The kernel replaces the minimum in (1) with a soft
minimum that sums over all possible DTW alignments
between two series xi, xj :

k(xi, xj) :=
∑

a∈A(xi,xj)

exp(−τ(xi, xj ; a))

:=
∑

a∈A(xi,xj)

|a|∏
t=1

κ(xi[a1(t)], xj [a2(t)])

(2)

where κ(., .) is some local similarity function induced
from the divergence τ as κ = exp(−τ). The function (2)
is a p.d. kernel when κ(., .) satisfies certain conditions
[Cuturi et al., 2007]. However, it is known that a
soft minimum can be orders of magnitude larger than
the minimum when summing over exponentially many
terms, which results in a serious diagonally dominant
problem for the kernel (2). In other words, the kernel
value between a series to itself k(xi, xi) is orders of
magnitude larger than other values k(xi, xj). Thus
in practice, one must take the log of the kernel (2)
even though such operation is known to break the p.d.
property [Cuturi, 2011]. In addition, the evaluation of
kernel (2) requires running DP over all pairs of samples
and thus gives a high complexity of O(N2L2).
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Figure 1: Example of the DTW alignment between
original time series of length L = 512 and random time
series of length D = 10.

3 Novel Time-Series Kernels via
Alignments to Random Series

In this section, we study a new approach to build a
family of p.d. kernels for time series based on DTW,
inspired by the latest advancement of kernel learning
methodology from distance [Wu et al., 2018].

Formally, the kernel is defined by integrating a feature
map over a distribution of random time series p(ω),
with each feature produced by alignments between
original time series x and random series ω:

k(x, y) =

∫
ω

p(ω)φω(x)φω(y)dω,

where φω(x) :=
∑

a∈A(ω,x)

p(a|ω)τ(ω, x; a).
(3)

The kernel (3) enjoys several advantages. First, (3) is
a p.d. kernel by its construction.
Proposition 1. The kernel (3) is positive definite,
that is,

∑N
i=1

∑N
j=1 cicjk(xi, xj) ≥ 0 for any {ci | ci ∈

R}Ni=1 and any {xi | xi ∈ X}Ni=1.

Proof. By definition (3), we have

N∑
i=1

N∑
j=1

cicjk(xi, xj) =

N∑
i=1

N∑
j=1

cicj

∫
ω

p(ω)φω(xi)φω(yj)dω

=

∫
ω

p(ω)

N∑
i=1

N∑
j=1

cicjφω(xi)φω(xj)dω

=

∫
ω

p(ω)

(
N∑
i=1

ciφω(xi)

)2

dω ≥ 0.

Secondly, by choosing

p(a|ω) =

{
1, a∗ = argmina τ(ω, x; a)
0, o.w.

(4)
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one can avoid the diagonal dominance problem of the
kernel matrix, since the kernel value between two
time series k(x, y) depends only on the correlation
of τ(ω, x; ax) and τ(ω, y; ay) under their optimal align-
ments. It thus avoids the dominance of the diagonal
terms k(x, x) caused by the summation over exponen-
tially many alignments. We can interpret the random
series ω of length D as the possible shapes of a time
series, defined by D segments, each associated with
a random number. Figure 1 gives an example of a
random series ω of length D = 10, which divides a time
series x into D segments and outputs a dissimilarity
score as the feature φω(x). The third advantage of (3)
is its computational efficiency due to a simple random
features approximation. Although the kernel function
(3) seems hard to compute, we show that there is a
low-dimensional representation of each series T (x), by
which one can efficiently find an approximate solution
to that of the exact kernel (3) within ε precision. This
is in contrast to the global-alignment kernel (2), where
although one can evaluate the kernel matrix exactly in
O(N2L2) time, it is unclear how to efficiently find a
low-rank approximation.

3.1 Computation of Random Warping Series

Although the kernel (3) does not yield a simple analytic
form, it naturally yields a random approximation of
the form using a simple MC method,

k(x, y) ≈
〈
T (x), T (y)

〉
=

1

R

R∑
i=1

〈
φωi(x), φωi(y)

〉
.

The feature vector T (x) is computed using dissimilarity
measure τ({ωi}Ri=1, x), where {ωi}Ri=1 is a set of random
series of variable length D with each value drawn from
a distribution p(ω). In particular, the function τ could
be any elastic distance measure but without loss of
generality we consider DTW as our similarity measure
since it has proved to be the most successful metric for
time series [Wang et al., 2013, Xi et al., 2006].

Algorithm 1 summarizes the procedure to generate
feature vectors for raw time series. There are several
comments worth making here. First of all, the distri-
bution of p(ω) plays an important role in capturing
the global properties of original time-series. Since we
explicitly define a kernel from this distribution, it is
flexible to search for the best distribution that fits data
well for underlying applications. In our experiments,
we find the Gaussian distribution is generally applicable
for time series from various applications. Specifically,
the parameter σ stems from a distribution p(ω) that
should well capture the characteristics of time series
{xi}Ni=1. Second, as shown in Figure 1, a short random
warping series could typically identify the local pat-
terns as well as global patterns in raw time series. It

Algorithm 1 RWS Approximation: An Unsupervised
Feature Representation for Time Series

Input: Time series {xi}Ni=1, 1 ≤ |xi| ≤ L, Dmin,
Dmax, R, σ associated to p(ω).
Output: Feature matrix TN×R for time series

1: for j = 1, . . . , R do
2: Draw D uniformly from [Dmin, Dmax]. Generate

random time series ωj of length Dj with each value
drawn from distribution p(ω) normalized by σ.

3: Compute a feature vector T (:, j) = φωi({xi}Ni=1)
using DTW with or without a window size.

4: end for
5: Return feature matrix TN×R = 1√

R
[T (:, 1 : R)]

suggests that there are some optimal alignments that
allow short random series to segment raw time series
to obtain discriminatory features. In practice, there
is no prior information for this optimal alignment and
thus we choose to uniformly sample the length of ran-
dom series between [Dmin, Dmax] to give an unbiased
estimate of D, where Dmin = 1 is used in our experi-
ments. Additional benefits lie in the fact that random
series with variable lengths may simultaneously identify
multi-scale patterns hidden in the raw time series.

In addition to giving a practical way to approximate
the proposed kernel, applying these random series also
enjoys the double benefits of reduced computation and
memory consumption. Compared to the family of
global alignment kernels [Cuturi et al., 2007, Cuturi,
2011], computing the dense kernel matrix K ∈ RN×N
requires O(N2) times evaluation of DTW which usu-
ally takes O(L2) complexity based on DP. It also needs
O(NL+N2) to store the original time series and result-
ing kernel matrix. In contrast, our RWS approximation
only requires linear complexity of O(NRL) computa-
tion and O(NR) storage size, given D is a small con-
stant. This dramatic reduction in both computation
and memory storage empowers much more efficient
training and testing when combining with ERM classi-
fiers such as SVM.

3.2 Convergence of Random Warping Series

In the following, we extend standard convergence anal-
ysis of Random Features [Rahimi and Recht, 2007]
from a kernel between two fixed-dimensional vectors
to a kernel function measuring similarity between two
time series of variable lengths. Note [Wu et al., 2018]
has proposed a general analysis for any distance-based
kernel through covering number w.r.t. the distance,
which however, does not apply directly here since DTW
is not a distance metric.

Let (A,B) be l ×D and l × L matrices that map each
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element of ω and x to an element of a DTW alignment
path. The feature map of RWS can be expressed as

φω(x) := min
(A,B)∈A(ω,x)

τ(Aω,Bx) =

l∑
i=1

τ([Aω]i, [Bx]i).

(5)
Note that in practice one can often convert a similarity
function into a dissimilarity function to fit into the
above setting. The goal is to approximate the kernel
k(x, y) :=

∫
ω
p(ω)φω(x)φω(y)dω via a sampling approx-

imation sR(x, y) = 1
R

∑R
i=1 φωi(x)φωi(y) with ωi ∼

p(ω). Note we have E[sR(x, y)] = Eωi [φωi(x)φωi(y)] =
k(x, y). The question is how many samples R are
needed to guarantee

|sR(x, y)− k(x, y)| ≤ ε ∀x, y ∈ X (6)

In the standard analysis of RF, the required sample
size is Ω( dε2 log

σpdiam(X )
ε ) where X comprises all d-

dimensional vectors of diameter diam(X ). The stan-
dard analysis does not apply to our case for two rea-
sons: (a) our domain X contains time series of different
lengths, and (b) our kernel involves a minimization
(5) over all possible DTW alignments, and thus is not
shift-invariant as required in [Rahimi and Recht, 2007].
To obtain a uniform convergence bound that could
potentially handle time series of unbounded length,
we introduce the notion of minimum shape-preserving
length.
Definition 1. The Minimum Shape-Preserving
Length (MSPL) dε of tolerance ε is the smallest L
such that ∀x ∈ X ,∃x̃ ∈ RL,

min
(A,B)∈A(x̃,x):B=I

‖Ax̃−Bx‖ ≤ ε (7)

where A(x̃, x) is the set of possible alignments between x̃
and x considered by DTW, and I is an identity matrix.

In other words, dε defines the smallest length one can
compress a time series to with approximation error no
more than ε, measured by DTW in the `2 distance.
Then the following gives the number of RWS required
to guarantee an ε uniform convergence over all possible
inputs x, y ∈ X .
Theorem 1. Assume the ground metric τ(Aω,Bx)
satisfies |τ(., .)| ≤ γ and is Lipschitz-continuous w.r.t.
x with parameter β(ω) where Var[β(ω)] ≤ σ2

τ . The
RWS approximation with R features satisfies

P

[
max
x,y∈X

|sR(x, y)− k(x, y)| ≥ 3ε

]
≤ 8r2

(
4γστ
ε

)2

e
− Rε2

32γ4(1+dε) . (8)

where r is the radius of time series domain X in the
`∞ norm and dε is the MSPL with precision ε.

Proof Sketch. Let f(x, y) := sR(x, y) − k(x, y). We
have E[f(x, y)] = 0 and |f(x, y)| ≤ 2γ2 by the bound-
edness of function τ(., .). Then by Hoeffding inequality,
we have

P [|f(x, y)| ≥ t] ≤ 2 exp(−Rt2/8γ4) (9)

for a given pair (x, y) ∈ X ×X . To get a uniform bound
that holds for all pairs of series (x, y) ∈ X ×X , consider
the pair of series (x̃, ỹ) of minimum shape-preserving
length d(ε) under precision ε. We have an ε-net E with
|E| = ( 2r

ε )d that covers the d-dimensional `∞-ball of
radius r. Then through union bound and (9), we have

P

[
max
x̃i,ỹj∈E

|f(x̃i, ỹj)| ≥ t
]
≤ 2|E|2 exp(−Rt2/8γ4).

(10)
Let B∞(d) be the d-dimensional `∞-ball. Given any
time series x, y ∈ X of arbitrary length, we can first find
x̃, ỹ ∈ B∞(d) with ‖Ãx̃−x‖ ≤ ε, ‖Ãỹ−y‖ ≤ ε and then
find x̃i, ỹj ∈ E such that ‖x̃− x̃i‖ ≤ ε, ‖ỹ− ỹj‖ ≤ ε. By
the result of Lemma 1 (see appendix 6.1), the closeness
of (x, y) to (x̃i, ỹi) implies the closeness of f(x, y) to
f(x̃i, ỹi), which leads to

P [|f(x, y)− f(x̃i, ỹi)| ≥ 2t] ≤ 8γ2σ2
τ ε

2

t2
. (11)

Combining (10) and (11), we have

P

[
max
x,y∈X

|f(x̃, ỹ)| ≥ 3t

]
≤ 2

(
2r

ε

)2d

e
− Rt2

32γ4 +
16γ2σ2

τ ε
2

t2
.

(12)
This is of the from κ1ε

−2d + κ2ε
2. Choosing ε =

(κ1/κ2)
1/(2+2d) to balance the two terms in (12), the

RHS becomes 2κ
1/(1+d)
1 κ

d/(1+d)
2 . This yields the result

P

[
max
x,y∈X

|f(x, y)| ≥ 3t

]
≤ 8r2

(
4γστ
t

)2

e
− Rt2

32γ4(1+d) .

The above theorem 1 shows that, to guarantee
supx,y∈X |sR(x, y)− k(x, y)| ≤ ε with probability 1− δ,
it suffices to have R = Ω(dεγ

4

ε2 log γrστ
δε ). In practice,

the constants r, γ are not particularly large due to
the normalization on series x, y ∈ X and dissimilarity
function τ(., .). The main factor determining the rate
of convergence is the shape-preserving length dε. Note
that for problems with time series length bounded by
L, we always have dε ≤ L, which means the number of
features required would be only of order R = Ω(L/ε2).

4 Experiments

We conduct experiments to demonstrate the efficiency
and effectiveness of the RWS, and compare against 9
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baselines on 16 real-world datasets from the widely-
used UCR time-series classification archive [Chen et al.,
2015] as shown in Table 1. We evaluate RWS on the
datasets with variable number and length to achieve
these goals: 1) competitive or better accuracy for small
problems; 2) matches or outperforms other methods in
terms of both performance and runtime for middle or
large scale tasks. We implement our method in Matlab
and use C Mex function 1 for computationally expensive
component of DTW. For other methods we use the
same routine to promote a fair runtime comparison,
where the window size of DTW is set as min(L/10, 40)
similar to [Lei et al., 2017, Paparrizos and Gravano,
2015]. More details about datasets and parameter
settings are in Appendix 6.2.

Table 1: Properties of the datasets. The number and
the length of time series are sorted increasingly.

Name C:Classes N :Train M :Test L:length
Beef 5 30 30 470

DPTW 6 400 139 80
IPD 2 67 1,029 24

PPOAG 3 400 205 80
MPOC 2 600 291 80
POC 2 1,800 858 80
LKA 3 375 375 720
IWBS 11 220 1,980 256
TWOP 4 1,000 4,000 128
ECG5T 5 500 4,500 140
CHCO 3 467 3,840 166
Wafer 2 1,000 6,174 152

MALLAT 8 55 2,345 1,024
FordB 2 3636 810 500

NIFECG 42 1,800 1,965 750
HO 2 370 1,000 2,709

4.1 Effects of σ, R and D on RWS

Setup. We first perform experiments to investigate
the characteristics of the RWS method by varying the
kernel parameter σ, the rank R and the length D of
random series. Due to limited space, we only show
typical results and see Appendix 6.3 for complete ones.

Effects of σ. It is well known that the choice of the
kernel parameter σ determines the quality of various
kernels. Figure 2 shows that in most cases the training
and testing performance curves agree well in the sense
that they consistently increase at the beginning, stabi-
lize around σ = 1 (which corresponds to the standard
distribution), and finally decrease in the end. In a few
cases like NIFECG, the optimal performance is slightly
shifted from σ = 1. This observation is favorable since
it suggests that one may easily tune our approach over
a smaller interval around σ = 1 for good performance.

Effects of R. We evaluate the training and testing
performance when varying the rank R from 4 to 512
with fixed σ and D. Figure 3 shows that the training

1https://www.mathworks.com/matlabcentral
/fileexchange/43156-dynamic-time-warping–dtw-

Table 2: Classification performance comparison among
RWS, TSEigen, and TSMC with R = 32.

Classifier RWS TSEigen TSMC
Dataset Accu Time Accu Time Accu Time
Beef 0.733 0.3 0.633 2.1 0.433 0.6

DPTW 0.79 0.5 0.738 7.1 0.738 1.5
IPD 0.969 0.3 0.911 8.6 0.80 1.7

PPOAG 0.868 0.4 0.82 8.9 0.82 1.8
MPOC 0.711 0.8 0.653 19.3 0.653 2.4
POC 0.711 2.4 0.686 172.3 0.66 8.2
LKA 0.792 7.3 0.528 401.5 0.525 39.5
IWBS 0.619 8.9 0.633 784.6 0.57 31.9
TWOP 99.9 4.4 0.976 1395 0.946 32.8
ECG5T 0.933 10.6 0.932 1554 0.918 36.0
CHCO 0.572 6.3 0.529 1668 0.402 45.7
Wafer 0.993 9.6 0.89 3475 0.89 59.3

MALLAT 0.937 33.9 0.898 7982 0.888 282.6
FordB 0.727 43.5 0.704 10069 0.686 216.3

NIFECG 0.907 19.8 0.867 10890 0.582 265
HO 0.843 43.3 0.845 46509 0.82 979.1

and testing accuracy generally converge almost expo-
nentially when increasing R from very small number
(R = 4) to a relative large number (R = 64), and then
slowly saturate to the optimal performance. Empir-
ically, this feature is the most favorable because the
performance of RWS is relatively stable even for small
R. More importantly, this confirms our analysis in
Theorem 1 that our RWS approximation can guarantee
(rapid) convergence to the exact kernel.

Effects of D. We investigate the effect of the length
D of the random series on training and testing perfor-
mance. As hinted at earlier, a key insight behind the
proposed time-series kernel depends on the assumption
that a random series of short length can effectively seg-
ment raw time series in a way that captures its patterns.
Figure 4 shows that although testing accuracy seems
to fluctuate when varying Dmax from 10 to 100, it is
clear that the near-peak performance can be achieved
when Dmax is small in the most of cases.

4.2 Comparing Feature Representations

Baselines and Setup. We compare our approach
with two recently developed methods: 1) TSEigen
[Hayashi et al., 2005]: learn a low-rank feature repre-
sentation for a similarity matrix computed using DTW
distance through Singular Value Decomposition [Wu
and Stathopoulos, 2015, Wu et al., 2017]; 2) TSMC [Lei
et al., 2017]: a recently proposed similarity preserving
representation for DTW-based similarity matrix using
matrix completion approach. We set R = 32 for all
methods. We employ a linear SVM implemented in
LIBLINEAR [Fan et al., 2008] since it can separate
the effectiveness of the feature representation from the
power of the nonlinear learning solvers.

Results. Table 2 clearly demonstrates the significant
advantages of our approach compared to other rep-
resentations in terms of both classification accuracy
and computational time. Indeed, TSMC improves the
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Figure 2: Train (Blue) and test (Red) accuracy when varying σ with fixed D and R.
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Figure 3: Train (Blue) and test (Red) accuracy when varying R with fixed σ and D.

10
1

10
2

DMax

90

92

94

96

98

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train R=32 sigma=1.58

Test R=32 sigma=1.58

(a) MALLAT

10
1

10
2

DMax

64

66

68

70

72

74

76

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=32 sigma=1.58

Test R=32 sigma=1.58

(b) FordB

10
1

10
2

DMax

88

90

92

94

96

98

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=32 sigma=0.14

Test R=32 sigma=0.14

(c) NIFECG

10
1

10
2

DMax

75

80

85

90

95

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=32 sigma=1.12

Test R=32 sigma=1.12

(d) HO

Figure 4: Train (Blue) and test (Red) accuracy when varying D with fixed σ and R.

computational efficiency compared to TSEigen without
compromising large loss of the accuracy as claimed
in [Lei et al., 2017]. However, RWS is corroborated
to achieve both higher accuracy and faster train and
testing time compared to TSMC and TSEigen. The
improved accuracy of RWS suggests that a truly p.d.
time series kernel admits better feature representations
than those obtained from a similarity or kernel (not
p.d.) matrix. In addition, improved computational
time illustrates the effectiveness of using random series
to approximate the exact kernel.

4.3 Comparing Time-Series Classification

Baselines. We now compare our method with other
state-of-the-art time series classification methods that
also take advantage of DTW distance or employ
DTW-like kernels: 1) 1NN-DTW: use window size
min(L/10, 40); 2) 1NN-DTWopt: use optimal window
size using leave-one-out cross validation from test data
in [Chen et al., 2015] 3) DTWF [Kate, 2016]: a re-

cently proposed method that combines DTW without
and with constraints and SAX [Lin et al., 2007] as
features; 4) TGAK [Cuturi, 2011]: a fast triangular
global alignment kernel for time-series; 5) RWS(LR):
RWS with large rank that achieves the best accuracy
with more computational time; 6) RWS(SR): small
rank that obtains comparable accuracy in less time.
We conduct grid search for important parameters in
each method suggested in [Kate, 2016, Cuturi, 2011].

Results. Table 3 corroborates that RWS consistently
outperforms or matches other state-of-the-art methods
in terms of testing accuracy while requiring significantly
less computational time. First, RWS(SR) can achieve
better or similar performance compared to 1NN-DTW
and 1NN-DTW opt for all datasets. This is a strong
sign that our learned feature representation is very
effective, since, using it, even a linear SVM can beat
the well-recognized benchmark. Meanwhile, the clear
computational advantages of RWS over 1NN-DTW can
be observed when the number or the length of time
series samples become large. This is not surprising since
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Table 3: Classification performance comparison among methods using DTW or DTW-like kernels.

Classifier RWS(LR) RWS(SR) 1NN-DTW 1NN-DTWopt TGAK DTWF
Dataset Accu Time Accu Time Accu Time Accu Time Accu Time Accu Time
Beef 0.767 0.8 0.733 0.3 0.567 1.1 0.633 0.3 0.633 24.7 0.60 3.7

DPTW 0.865 4.2 0.80 0.2 0.73 1.4 0.718 0.8 0.738 27.9 0.77 3.0
IPD 0.965 1.0 0.962 0.4 0.947 55.3 0.962 56.0 0.739 3.7 0.953 0.5

PPOAG 0.868 0.3 0.859 0.2 0.776 2.0 0.785 1.2 0.854 118.2 0.829 9.7
MPOC 0.773 6.8 0.708 0.8 0.635 4.4 0.663 2.7 0.627 117.3 0.653 10.2
POC 0.815 38.2 0.746 4.7 0.721 36.9 0.751 20.1 0.613 2373 0.79 202.7
LKA 0.84 54.9 0.816 13.6 0.712 97.7 0.837 573.6 0.645 13484 0.80 1220
IWBS 0.641 132.4 0.619 8.8 0.504 70.9 0.589 36.1 0.126 2413 0.609 260.3
TWOP 1 16.1 0.999 4.4 1 222.2 1 157.5 0.269 5690 1 481.7
ECG5T 0.94 9.2 0.934 4.9 0.928 137.8 0.928 70.1 0.927 2822 0.933 278.3
CHCO 0.777 189.1 0.683 48.1 0.627 160.8 0.627 57.0 0.545 3122 0.666 333.6
Wafer 0.995 143.6 0.993 9.6 0.986 412.3 0.996 210.1 0.896 11172 0.994 980.5

MALLAT 0.952 72.8 0.937 33.8 0.937 150.3 0.925 65.5 0.257 11882 0.915 988.4
FordB 0.793 543.8 0.62 5.6 0.589 1476 0.581 577.6 N/A N/A 0.83 8402

NIFECG 0.936 140.2 0.903 20.0 0.845 2699 0.857 1432 N/A N/A 0.906 32493
HO 0.871 336.9 0.834 41.9 0.816 4883 0.807 5837 N/A N/A 0.898 40407

Table 4: Clustering performance comparison among different methods.

Clustering RWS(LR) RWS(SR) KMeans-DTW CLDS K-Shape
Dataset NMI Time NMI Time NMI Time NMI Time NMI Time
Beef 0.29 1.1 0.27 1.0 0.25 377 0.24 61.3 0.22 1.8

DPTW 0.52 0.6 0.56 0.5 0.55 182 0.55 176.8 0.45 14.9
PPOAG 0.56 0.5 0.54 0.2 0.44 105.4 0.55 191.1 0.27 40.2
IWBS 0.43 43.9 0.36 6.3 0.37 5676 0.38 1109 0.43 377.6
TWOP 0.23 11.2 0.3 4.7 0.12 1960 0.02 1312 0.4 292.1
ECG5T 0.46 25.7 0.4 7.0 0.48 2539 0.37 1308 0.35 360.7
MALLAT 0.92 48.2 0.91 25.4 0.72 95218 0.92 2448 0.75 900.4
NIFECG 0.71 346.1 0.68 43.7 0.63 101473 0.67 3442 0.73 5387

RWS reduces both number and length of time series
from quadratic complexity to linear complexity. Second,
RWS is much better than another family of time series
kernels represented by TGAK, which probably indicates
that considering the soft-minimum of all alignment
distances does not capture well hidden patterns of time
series. Third, DTWF shows significant performance
difference compared to 1NN-DTW, which is consistent
with the reported results in [Kate, 2016]. However,
compared to DTWF, RWS(LR) can still show clear
advantages in accuracy among 11 cases out of the
total 16 datasets while achieving one or two orders
of magnitude speedup. More importantly, RWS can
support a trade-off between the accuracy and run-time.
This feature is highly desirable in real applications that
may have a variety of priorities and constraints.

4.4 Comparing Time-Series Clustering

Baselines. We compare our method against several
time-series clustering baselines: 1) KMeans-DTW [Pe-
titjean et al., 2011, Paparrizos and Gravano, 2015]:
accelerate computation with lower bounding approach
LBKeogh [Keogh, 2002]; 2) CLDS [Li and Prakash,
2011]: learns a feature representation with R hidden
variables through complex-valued linear dynamical sys-
tems; 3) K-Shape [Paparrizos and Gravano, 2015]: re-
cently proposed clustering method demonstrated to
outperform state-of-the-art clustering approaches in
accuracy and computational time; 4) RWS(LR); 5)
RWS(SR). We combine our learned feature represen-

tation with the classic KMeans algorithm [Hartigan
and Wong, 1979]. We employ a commonly used cluster-
ing metric, the normalized mutual information (NMI
scaling between 0 and 1) to measure the performance,
where higher value indicates better accuracy.

Results. Table 4 shows that RWS provides similar
or better performance and typically is substantially
faster than KMeans-DTW when the number or the
length of time-series become large. In addition, RWS
can consistently outperform CLDS in terms of both
accuracy and runtime. Interestingly, even compared
to the state-of-the-art method K-Shape, RWS can still
yield a clear advantage in terms of accuracy; RWS yields
5 wins, 1 even, and 2 loses over K-Shape for 8 datasets.
Besides its accuracy, the better computational efficiency
of RWS over K-Shape is also corroborated.

5 Conclusions and Future Work

In this work, we have studied an effective and scal-
able time-series (p.d.) kernel for large-scale time series
problems based on RWS approximation, and the fea-
ture embedding generated by the technique is generally
applicable to most of learning problems. There are
several interesting directions of future work, including:
i) studying the effects of different random time-series
distribution p(ω) and ii) exploring more elastic dissim-
ilarity measure between time series such as CID and
DTDC.
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