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ABSTRACT
Kernel method has been developed as one of the standard approaches
for nonlinear learning, which however, does not scale to large data
set due to its quadratic complexity in the number of samples. A
number of kernel approximation methods have thus been proposed
in the recent years, among which the random features method gains
much popularity due to its simplicity and direct reduction of nonlin-
ear problem to a linear one. Many different random basis functions
have since been proposed to approximate different types of kernel.
Among them the Random Binning (RB) features, proposed in the
first random features paper [19], has drawn significantly less at-
tention than that of Random Fourier (RF) features proposed also in
[19]. However, in this work we observe the RB approach, with right
choice of optimization solver, could be orders of magnitude faster
than other random features and kernel approximation methods to
achieve the same accuracy. We thus propose the first analysis of RB
from the perspective of optimization, which by interpreting RB as a
Randomized Block Coordinate Descent in the infinite-dimensional
space, gives a faster convergence compared to that of other random
features. In particular, we show that by drawing R grids with at
least κ expected number of non-empty bins per grid, RB achieves
a convergence rate of O(1/κR), which is not only better than the
existing O(1/

√
R) rate from Monte Carlo analysis, but also shows

a κ times speedup over other random features under the same anal-
ysis framework. In addtion, we demonstrate another advantage of
RB in the L1-regularized setting, where unlike other random fea-
tures, a RB-based Coordinate Descent solver can be parallelized
with guaranteed speedup proportional to κ. Our extensive exper-
iments demonstrate the superior performance of the RB features
over other random features and kernel approximation methods.
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1. INTRODUCTION
Kernel methods have great promise for learning non-linear model

from simple data input representations and have been demonstrated
to be successful for solving various problems in machine learning
and data mining, ranging from regression, classification, feature
extraction, clustering and dimensionality reduction [24, 28]. How-
ever, they are typically not first choice for large-scale nonlinear
learning problems since large amounts of modern datasets present
significant challenges to both computation and memory consump-
tions for computing the dense kernel matrix K ∈ RN×N . It re-
quires O(N2) to store the matrix, and takes at least O(N2) or
O(N3) computational costs depending on if the iterative solvers
or direct solvers are employed. To scale up the kernel methods,
there have been many great efforts to address this challenge, by ap-
plying advance knowledge from various areas such as numerical
linear algebra and functional analysis [4].

From the perspective of numerical linear algebra, a line of re-
search [29, 26, 7, 25] has been devoted to directly approximate the
kernel matrix using low-rank factorizations, K ≈ ZTZ, where
Z ∈ RN×R and R ≤ N . Among them, the Nyström method
and its fruitful variants [29, 5, 11, 8, 25] are probably one of the
most popular methods. Depending on if the subsequent kernel algo-
rithms to operate on K explicitly or implicitly through Z, the total
computational costs areO(NRd+NR2+R3) orO(NRd+NRk)
by using O(NR) storage, where d and k are the input data dimen-
sions and the number of the iterations using iterative solvers, re-
spectively. However, in practice, the convergence of these low-rank
kernels could be slow since the approximation error of the objective
function is proportional to O(1/

√
R + 1/

√
N) [5, 31]. It implies

that the rank R may need to be near-linear to the number of data
points in order to achieve less performance loss compared to the
vanilla kernel method. For very large-scale problems like spatial
data, the low-rank approximation based methods become almost as
expensive as the exact kernel method when R grows close to N in
order to maintain a competitive performance [27].

Another popular approach for scaling up kernel methods is to
using random features approximation [19, 20]. Unlike the previous
approach to approximate kernel matrix, the method approximates
the kernel function directly by using explicit feature maps. In par-



ticular, Random Fourier (RF) features has attracted considerable
interests due to its easy implementation and fast execution time
[20, 12, 30, 4]. The merit of this approach is that the total compu-
tational costs and storage requirements are O(NRd + NRk) and
O(NR) respectively, for computing feature matrix Z and operat-
ing the subsequent kernel algorithms on Z. Fastfood and its exten-
sion [12, 30] improve the prediction time of random features from
O(Rd) to O(R log d) by leveraging the Hadamard basis functions
instead of using the Fourier basis functions. Although RF features
has been successfully applied to speech recognition and vision clas-
sifications for very large datasets [3, 10, 16], a drawback is that a
significant large number of random features are needed to achieve
a comparable performance. This is not surprising since the conver-
gence of approximation error is the order of O(1/

√
R + 1/

√
N)

[20, 4], which is the same as that of low-rank kernel approximations
in the previous approach.

The core idea of Mercer’s theorem [18] states that any positive
definite kernel can be expressed as a decomposition of a set of ba-
sis functions for some feature maps. However, the decomposition
is not unique and one may find different basis functions to com-
posite the same kernel [31]. Therefore, we ask following question:
can some of the basis functions converge faster than the others ?
To answer this question, in this paper, we reconsider Random Bin-
ning (RB) features for scaling up the kernel methods. Our main
contributions are fourfold.

First, we propose the first analysis of RB from the perspective
of optimization. By interpreting RB as a Randomized Block Coor-
dinate Descent (RBCD) in the Reproducing Kernel Hilbert Space
(RKHS) induced from the kernel, we prove that RB enjoys faster
convergence than other random features. Specifically, by draw-
ing R grids with at least κ expected number of non-empty bins
per grid, RB can achieve a solution comparable to the exact kernel
method within O(1/κR) precision in terms of the objective func-
tion, which is not only better than the existing O(1/

√
R) rate from

Monte Carlo analysis [19], but also shows a κ times speedup over
other random features under the same analysis framework [31].

Second, we exploit the sparse structure of the feature matrix Z,
which is the key to rapidly transform the data features into a very
high-dimension feature space that is linearly separately by any re-
gressors and classifiers. In addition, we discuss how to efficiently
perform the computation for a large, sparse matrix by using state-
of-the-art iterative solvers and advanced matrix storage techniques.
As a result, the computational complexity and storage requirements
in training are still O(NRd+NRk) and O(NR), respectively.

Third, we also propose to combine the RB features with L1-
regularization to produce sparse nonlinear predictor that have faster
prediction and more compact representation, yielding the Sparse
Random Binning Features algorithm. We show that a state-of-the-
art Randomized Coordinate Descent (RCD) solver with RB can be
parallelized with guaranteed speedup proportional to κ.

Fourth, we provides extensive sets of experiments to demonstrate
the efficiency and effectiveness of RB. Compared to other popular
low-rank approximations, RB shows the superior performance for
regression and classification due to its much faster convergence. In
particular, for obtaining same performance, RB achieves between
one and three orders of magnitude faster and memory savings than
other approximated kernels. Finally, we demonstrate the strong
parallel performance of RB over RF by using RCD solver as a result
of the high sparsity in Z.

2. RANDOM BINNING FEATURE AS KER-
NEL APPROXIMATION

In this work, we consider the problem of fitting a nonlinear pre-
diction function f : X → Y in the RKHS H from training data
{(xn, yn)}Nn=1 of pairs, where xn ∈ X ⊆ Rd and yn ∈ Y via
approach of Empirical Risk Minimization (ERM)

f∗ = argmin
f∈H

λ

2
‖f‖2H +

1

N

N∑
n=1

L(f(xn), yn), (1)

where L(z, y) is a convex loss function with Lipschitz-continuous
derivative satisfying |L′(z1, y) − L′(z2, y)| ≤ β|z1 − z2|, which
includes several standard loss functions such as the square-loss
L(z, y) = 1

2
(z − y)2, square-hinge loss L(z, y) = max(1 −

zy, 0)2 and logistic loss L(z, y) = log(1 + exp(−yz)).

2.1 Learning in Reproducing Kernel Hilbert
Space

The space H can be specified through the choice of a positive-
definite (PD) kernel function k(x1,x2) that measures the similarity
between samples by definingH as the the space spanned by:

H =

{
f(·) =

K∑
i=1

αik(xi, ·) | αi ∈ R,xi ∈ X

}
. (2)

The other way is to find a possibly infinite-dimensional feature
map {φ̄h(x)}h∈H with each h ∈ H that defines a basis function
φ̄h(x) : X → R s.t. the space can be represented as

H =

{
f(·) =

∫
h∈H

w(h)φ̄h(·)dh = 〈w, φ̄(·)〉H | ‖f‖2H <∞
}
,

(3)
where w(h) is a weighting function over the basis {φh(x)}h∈H.
The Mercer’s theorem [18] connects the above two formulation
of RKHS by stating that every PD kernel k(x1,x2) can be ex-
pressed as an integration over basis functions for some feature map
{φh(.)}h∈H as

k(x1,x2) =

∫
h∈H

p(h)φh(x1)φh(x2)dh = 〈φ̄(x1), φ̄(x2)〉H,

(4)
However, the decomposition (4) is not unique, so one can find dif-
ferent feature maps {φh(.)}h∈H with different distribution p(h)
for the same kernel k(., .) to let equality (4) hold. In particular, as
an example used extensively in this work, the Laplacian Kernel

k(x1,x2) = exp

(
−‖x1 − x2‖1

σ

)
, (5)

allows decomposition based on (i) Fourier basis map [19], (ii) RB
map [19], and also (iii) map based on infinite number of decision
trees [14] to name a few. On the other hand, the different kernels
can be constructed from the same set of basis function through (4)
with different distribution p(h). For example, the RB feature map
can be used to construct shift-invariant kernel of the form [19]

K(x1,x2) = K(x1 − x2) =
d∏
j=1

kj(x1j − x2j), (6)

by sampling the "width" of bins δj for each feature j from a dis-
tribution proportional to δk′′(δ), where k′′(δ) is the second deriva-
tive of k(δ) w.r.t. δ, assuming the kernel has a non-negative second
derivative.

2.2 Random Binning Features



Figure 1: Generating process of RB features.

In this section, we describe the RB features [19], which considers
feature map of the form

K(x1,x2) =

∫
δ

p(δ)φBδ
(x1)TφBδ

(x2) dδ (7)

where Bδ is a grid parameterized by δ = (δ1, u1, ..., δd, ud) that
specifies the width and bias of the grid w.r.t. the d dimensions, and
φBδ

(x) is a vector which has, for b ∈ Bδ ,

φb(x) = 1, if b = (bxn1 − u1

δ1
c, ..., bxnd − ud

δd
c),

that is, when x lies in the bin b ∈ Bδ , and φb(x) = 0 for any
other bin b ∈ Bδ . Note for each grid Bδ the number of bins |Bδ|
is countably infinite, so φBδ

(x) has infinite dimensions but only 1
non-zero entry (at the bin x lies in). Figure 1 illustrates an example
when the raw dimension d = 2. The kernel K(x1,x2) is thus
interpreted as the collision probability that two data points x1, x2

fall in the same bin, when the grid is generated from distribution
p(δ). In [19], it is pointed out for any kernel of form (6) with
nonnegative second derivative k′′j (δ), one can derive distribution
p(δ) =

∏d
j=1 pj(δj)U(uj ; 0, δj), where pj(δj) ∝ δk′′j (δj) and

U(·, a, b) is uniform distribution in the range [a, b].
To obtain a kernel approximation scheme from the feature map

(7), a simple Monte Carlo method can be used to approximate (7)
by averaging over R grids {Bδr}Rr=1 with each grid’s parameter
δr drawn from p(δ). The procedure for generating R RB features
from raw data {xn}Nn=1 is given in Algorithm 1.

Using a Hoefding bound, one can show the Monte-Carlo approx-
imation to (7) yields an O(1/

√
R) approximation error. From the

Representer theorem, one can further bound error of the learned
predictor∣∣∣wT

RFz(x)− f∗(x)
∣∣∣ =

∣∣∣∣∣
N∑
n=1

αRFn z(xn)Tz(x)−
N∑
n=1

α∗nk(xn,x)

∣∣∣∣∣
as shown in the appendix of [19]. Unfortunately, the rate of con-
vergence suggests that to achieve small approximation error ε, one
needs significant amount of random features Ω(1/ε2), and further-
more, the Monte-Carlo analysis does not explain why empirically
RB feature achieves faster convergence than other random feature
map like Fourier basis, sometimes by orders of magnitude.

3. FASTER CONVERGENCE OF RANDOM
BINNING

In this section, we firstly illustrate the sparse structure of the fea-
ture matrix Z of RB and then discuss how to make efficient com-
putation and storage format of Z. By interpreting the RB features

Algorithm 1 Random Binning Features

Given a kernel function k(x1,x2) =
∏d
j=1 kj(|x1j−x2j |). Let

pj(δ) ∝ δk′′j (δ) be a distribution over δ.
for r = 1...R do

1. Draw δrj ∼ pj(δ), ∀j ∈ [d]. urj ∈ [0, δrj ], ∀j ∈ [d].
2. Compute feature zr(xn) as the the indicator vector of bin
index (bxn1−u1

δ1
c, ..., bxnd−ud

δd
c), for ∀n ∈ [N ].

end for.
Return z(xn) = 1√

D
[z1(xn); ...;zD(xn)] ∀n ∈ [N ] as the

data with RB Features.

D = 395
0 50 100 150 200 250 300 350

N
 =

 2
0

0

0

50

100

150

200

R = 10, nnz = 2000

Figure 2: Example of the sparse feature matrix ZN×D gen-
erated by RB. In this special case, Z has the number of rows
N = 200 and columns D = 395, respectively. The number of
grids R = 10 and the nnz(Z) = 2000. Note that for ith row of
Z, nnz(Z(i, :)) = R and R ≤ D ≤ NR.

as RBCD in the infinite-dimensional space, we prove that RB has
a faster convergence rate than other random features. We illustrate
them accordingly in the following sections.

3.1 Sparse Feature Matrix & Iterative Solvers
The first special feature of RB compared to other low-rank ap-

proximations is probably the fact that the feature matrix generated
by RB could be a large, sparse binary matrix Z ∈ RN×D , where
the value of D is determined by both number of grids R and kernel
parameter (ex. σ in the case of Laplacian Kernel). Different from
other random features, D, rather than R, is the actual number of
columns of Z. A direct connection between D and R is that the
matrix has each row i satisfying nnz(Z(i, :)) = R and therefore
R ≤ D ≤ NR. Intuitively speaking, RB has more expressive
power than RF since it generates a large yet sparse feature matrix
to rapidly transform the data space to a very high dimension space,
where data could become linearly separable by classifiers. Fig. 2
gives an example to illustrate the sparse structure of Z.

In the case of Kernel Ridge Regression (L2-regularization with
square loss), if using RB feature to approximate the RKHS, one
can solve (1) directly in its primal form. The weighting vector is
simply the solution of the linear system:

(ZTZ + λI)wRB = ZT y. (8)

Note since Z is a large sparse matrix, there is no need to explic-
itly compute the covariance matrix ZTZ, which is much denser
than Z itself. One can apply state-of-the-art sparse iterative solvers
such as Conjugate Gradient (CG) and GMRES to directly operate
on Z [23]. The main computation in CG or GMRES is the sparse
matrix-vector products. Let k be the number of iterations, then the



total computational complexity of iterative solver isO(k nnz(Z)),
which is also O(kNR). In addition, since most of elements in Z
are zeros, the Compressed Sparse Row type matrix storage format
should be employed for economically storing Z [9]. Therefore,
one can easily derive that the computational costs and memory re-
quirements in training are still O(kNR) and O(NR) respectively,
which are similar as other low-rank approximations [19, 29]. In
testing, each testing point produces a new sparse feature vector
z(x) ∈ RD based on the hash-table of partitions in training. Note
that, z(x) is a sparse vector nnz(z(x))) = R. Then we can com-
pute the decision function by z(x)TwRB . Therefore, the computa-
tional costs in testing are still O(dR+R). In our experiments, we
leverage kernel ridge regression to train both regressors and classi-
fiers since they are very efficient.

When the ERM is smooth but not quadratic, a Newton-CG method
that solves smooth problem via a series of local quadratic approx-
imation gives the same complexity per CG iteration [13], and note
that most of state-of-the-art linear classification algorithms have
complexity linear to nnz(Z), the number of nonzeros in design
matrix [6]. As an example, in section 4, we introduce a RCD algo-
rithm that has cost per iteration linear to nnz(Z) for L1-regularized
ERM with RB features.

3.2 Random Binning Feature as Block Coor-
dinate Descent

In [31], a new approach of analysis was proposed, which inter-
preted RF as a RCD method in the infinite dimensional space, and
gives a better O(1/R) rate in the convergence of objective func-
tion. In this section, we extend the approach of [31] to show that,
RB Feature can be interpreted as RBCD in the infinite-dimensional
space, which by drawing a block of features at a time, produces a
number of featuresD significantly more than the number of blocks
R, resulting a provably faster convergence rate than other RF. While
at the same time, by exploiting state-of-the-art iterative solvers in-
troduced in section 3.1, the computational complexity of RB does
not increase with number of features D but only the number of
blocks R. Consequently, to achieve the same testing accuracy, RB
requires significantly less training and prediction time compared to
other RF.

A key quantity to our analysis is an upper bound on the collision
probability νδ which specifies how likely data points will fall into
the same bin, and its inverse κδ := 1/νδ which is a lower bound
estimation of the number of bins of at least one data point. We
define them as follows.

Definition 1. Let the collision probability of dataD on bin b ∈ Bδ:

νb :=
|{n ∈ [N ] | φb = 1}|

N
. (9)

Let νδ := maxb∈Bδ νb be an upper bound on (9), and κδ := 1/νδ
be a lower bound on the number of bins of non-zero data point.

κ := Eδ[κδ] = Eδ[1/νδ] (10)

is denoted as the lower bound on the expected of number of (used)
bins w.r.t the distribution p(δ).

In the RB matrix, the expected collision probability is simply the
average number of non-zeros per column, divided by N , a number
much smaller than 1 as in the example of Fig. 2. Our analysis
assumes a smooth loss function satisfying the following criteria.

Assumption 1. The loss function L(z, y) is smooth w.r.t. response
z so difference between function difference and its linear approxi-

mation can be bounded as

L(z2, .)− L(z1, .) ≤ ∇L(z1, .)(z2 − z1) +
β

2
(z2 − z2)2.

for some constant 0 ≤ β ≤ ∞.

This assumption is satisfied for a wide range of loss such as
square loss (β = 1), logistic loss (β = 1/4) or L2-hinge loss
(β = 1).

We interpret RB as a Fully Corrective Randomized Block Coor-
dinate Descent (FC-RBCD) on the objective function

min
w̄

F (w̄) := R(w̄) + Loss(w̄;φ) (11)

where Loss(w̄;φ) = 1
N

∑N
n=1 L(〈w̄,φ(xn)〉, yn) and

φ̄ :=
√
p ◦ φ = (

√
p(δ)φBδ

(.))δ∈H

with "◦" denoting the component-wise product. The goal is by per-
forming R steps of FC-RBCD on (11), one can obtain a model w̄R

with comparable regularized loss to that from optimal solution of
(1). Note one advantage of analysis from this optimization perspec-
tive is: it does not rely on Representer theorem, and thusR(w) can
be L2 regularizer λ

2
‖w‖2 or L1 regularizer λ‖w‖1, where the latter

has advantage of giving sparse predictor of faster prediction [31].
The FC-RBCD algorithm maintains an active set of blocks A(r).
At each iteration r, the FC-RBCD does the following:

1. Draw δ from p(δ) ( derived from the kernel k(., .) ).

2. Expand active set A(r+1) := A(r) ∪Bδ .

3. Minimize (11) subject to a limited support supp(w̄) ⊆ A(r+1).

Note this algorithm is only used for analysis. In practice, one
can draw r = 1...R blocks of features at a time, and solve (11) by
any optimization algorithm such as those mentioned in section 3.1
or the CD method we will introduce in section 4.

Due to space limit, here we prove the more difficult case when
R(.) is the non-smooth L1 regularizer λ‖w̄‖1. The smooth case
for R(w) = λ

2
‖w̄‖2 can be shown in a similar but simpler way.

Note the objective function (11) can be written as

F̄ (w) := F (
√
p ◦w) = R(

√
p ◦w) + Loss(w, φ̄). (12)

by a scaling of variable w̄ =
√
p ◦w.

The below theorem states that, running FC-RBCD for R itera-
tions, it generates a solution w̄R close to any reference solutionw∗

in terms of objective (12) with their difference bounded byO( 1
κR

).

Theorem 1. Let R be the number of blocks (grids) generated by
FC-RBCD, andw∗ be any reference solution, we have

E[F̄ (w(R))]− F̄ (w∗) ≤ β‖w∗‖2

κR′
(13)

for R′ := R− c > 0, where c = d 2κ(F̄ (0)−F̄ (w∗))

β‖w∗‖2 e.

PROOF. Firstly, we obtain an expression for the progress made
by each iteration of FC-RBCD. LetB := Bδ(r) be the block drawn
at step 1 of FC-RBCD, and w̄(r+1) be the minimizer of (11) subject
to support supp(w̄) ⊆ A(r+1) given by the step 3. Since B ⊆
A(r+1), we have

F (w̄(r+1))− F (w̄(r)) ≤ F (w̄(r) + ηB)− F (w̄(r)) (14)



for any ηB : supp(η) ⊆ B. Then denote bi as the bin xi falling
in and L′i = ∇L(w̄(r)Tφ(xi), yi), by smoothness of the loss (As-
sumption 1), we have

Loss(w̄(r) + ηB)− Loss(w̄(r)) ≤ 1

N

N∑
i=1

L′iφbiη +
β

2
(ηbiφbi)

2

≤ 〈gB ,ηB〉+
βνδ(r)

2
‖ηB‖

2

(15)
where the second inequality uses the fact φbi = 1 and

gB := ∇BLoss(w̄(r),φ).

Now consider the regularization term, note since block B is drawn
from an inifinite-dimensional space, the probability that B is in
active set is 0. Therefore, we have B ∩ A(r) = ∅, w̄(r)

B = 0 and
RB(w̄

(r)
B ) = 0. As a result,

F (w̄(r) + ηB)− F (w̄(r))

≤ RB(ηB) + 〈gB ,ηB〉+
βνδ(r)

2
‖ηB‖

2
(16)

Let ηB be the minimizer of RHS of (16). It satisfies ρB + gB +
βvδ(r)ηB = 0 for some ρB ∈ ∂R(ηB), and thus,

F (w̄(r) + ηB)− F (w̄(r))

≤ 〈ρB ,ηB〉+ 〈gB ,ηB〉+
βνδ(r)

2
‖ηB‖

2

= − 1

2βνδ(r)
‖ρB + gB‖

2

(17)

Now taking expectation w.r.t. p(δ) on both sides of (17), we have

E[F (w̄(r) + ηB)]− F (w̄(r)) ≤ − 1

2β
E

[
1

νδ(r)
‖ρB + gB‖

2

]
≤ − 1

2β
E

[
1

νδ(r)

]
E
[
‖ρB + gB‖

2]
≤ − κ

2β
‖ρ̄+ ḡ‖2

(18)
where ρ̄ :=

√
p ◦ ρ, ḡ :=

√
p ◦ g, and the second inequality

uses the fact that the number of used bins κδ(r) = 1/νδ(r) has
non-negative correlation with the discriminative power of block
B measured by the magnitude of gradient with soft-thresholding
‖ρ̄B + ḡB‖ (i.e. less collisions on grid B implies B to be a better
block of features ).

The result of (18) expresses descent amount in terms of the prox-
imal gradient of the reparameterized objective (12). Note for B :

B∩A(r) = ∅, we havew(r)
B = 0, andRB(η̄)−RB(0) = 〈ρ̄, η̄〉;

on the other hand, for B ⊆ A(r), we have

0 ∈ argmin
η̄B

RB(
√
pBwB + η̄B) + 〈ḡB ,

√
pBwB + η̄B〉

since they are solved to optimality in the previous iteration. Then

E[F (w̄(r) + η)]− F (w̄(r))

≤ − κ

2β
‖ρ̄+ ḡ‖2 = 〈ρ̄, η̄〉+ 〈ḡ, η̄〉+

β

2κ
‖η̄Ā(r)‖2

= R(
√
p ◦ (w(r) + η̄))−R(

√
p ◦w(r)) + 〈ḡ, η̄〉+

β

2κ
‖η̄Ā(r)‖2

(19)
where η̄Ā(r) := (η̄B)B:B∩A(r)=∅ and η̄ :=

√
p◦η. Thus the final

step is to show the descent amount given by RHS of (19) decreases
the suboptimality F̄ (w(r)) − F̄ (w∗) significantly. This can be

achieved by considering η̄ of the form α(w∗ − w(r)) for some
α ∈ [0, 1] as follows:

E[F̄ (w(r) + η̄)]− F̄ (w(r))

≤ min
η̄
R(
√
p ◦ (w(r) + η̄))−R(

√
p ◦w(r)) + 〈ḡ, η̄〉+

β

2κ
‖η̄Ā(r)‖2

≤ min
η̄
F̄ (w(r) + η̄)− F̄ (w(r)) +

β

2κ
‖η̄Ā(r)‖2

≤ min
α∈[0,1]

F̄ ((1− α)w(r) + αw∗)− F̄ (w(r)) +
βα2

2κ
‖w∗‖2

≤ min
α∈[0,1]

−α(F̄ (w(r))− F̄ (w∗)) +
βα2

2κ
‖w∗‖2,

(20)
where the second and fourth inequalities are from convexity of
F̄ (.). The αminimizing (20) is α∗ := min(κ(F̄ (w(r))−F̄ (w∗))

β‖w∗‖2 , 1),
which leads to

E[F̄ (w(r) + η̄)]− F̄ (w(r)) ≤ −κ(F̄ (w(r))− F̄ (w∗))2

2β‖w∗‖2
(21)

if F̄ (w(r))−F̄ (w∗) ≤ β
κ
‖w∗‖2; otherwise, we haveE[F̄ (w(r)+

η̄)]− F̄ (w(r)) ≤ − β
2κ
‖w∗‖2. Note the latter case cannot happen

more than c = d 2κ(F̄ (0)−F̄ (w∗))

β‖w∗‖2 e times since FC-RBCD is a de-
scent method. Therefore, for r′ := r−c > 0, solving the recursion
(21) leads to the conclusion.

Note we have ‖√p ◦ w∗‖1 ≤ ‖
√
p‖‖w∗‖ = ‖w∗‖ in the L1-

regularized case, and thus the FC-RBCD guarantees convergence
of the L1-norm objective to the (non-square) L2-norm objective.
The convergence result of Theorem 1 is of the same form to the
rate proved in [31] for other random features, however, with an
additional multiplicative factor κ ≥ 1 that speeds up the rate by
κ times. Recall that κ is the lower bound on the expected number
of bins being used by data samples for each block of features Bδ ,
which in practice is a factor much larger than 1, as shown in the
Figure 2 and also in our experiments. In particular, in case each
grid Bδ has similar number of bins being used, we have D ≈ κR,
and thus obtain a rate of the form

E[F̄ (w(R))]− F̄ (w∗) .
β‖w∗‖2

D
. (22)

Note for a fixedR, the total number of featuresD is increasing with
kernel parameter 1/σ in the case of Laplacian Kernel, which means
the less smooth the kernel, the faster convergence of RB. A simple
extreme case is when σ → 0, where one achieves 0 training loss,
and the RB, by putting each sample in a separate bin, converges
to 0 loss with R = 1, D = N . On the other hand, other random
features, such as Fourier, still require large R for convergence to
0 loss. In practice, there are many data that require a small kernel
bandwidth σ to avoid underfitting, for which RB has dramatically
faster convergence than other RF.

4. STRONG PARALLELIZABILITY OF RAN-
DOM BINNING

In this section, we study another strength of RB Features in the
context of Sparse Random Feature [31], where one aims to train a
sparse nonlinear predictor that has faster prediction and more com-
pact representation through an L1-regularized objective. In this
case, the CD method is known as state-of-the-art solver [32, 21],
and we aim to show that the structure of RB allows CD to be paral-
lelized with much more speedup than that of other random features.



Algorithm 2 Sparse Random Binning Features Algorithm based on
RCD Method

0. Generate RB feature matrix Z by Algorithm 1
1. z1 = 0,w1 = 0.
for t=1...T do

2. Draw j from [D] uniformly at random.
3. Compute d∗j by (26).
4. wt+1 := wt + d∗jej .
5. Maintain ŷi, ∀i ∈ [N ] to satisfy (27).

end for

4.1 Coordinate Descent for Sparse Random Bin-
ning

Given the N ×D data matrix produced by the RB Algorithm 1,
a RCD Method solves

min
w∈RD

λ‖w‖1 +
1

N

N∑
n=1

L(wTzi, yi) (23)

by minimizing (23) w.r.t. a single coordinate j

min
dj

λ|wj + dj |+ gjdj +
Mj

2
d2
j (24)

at a time, where

gj :=
1

N

N∑
n=1

(∇jL(wTzi, yi))zij (25)

is the gradient of loss term in (23) w.r.t. the j-th coordinate, and
Mj := β 1

N

∑N
i=1 z

2
ij is an upper bound on ∇jjL(.). By focus-

ing on single coordinate, (24) is a tighter upper bound than other
algorithms such as Proximal Gradient Method and allows simple
closed-form solution

d∗j := proxR/Mj
(wj −

gj
Mj

)− wj (26)

proxR/Mj
(vj) :=

 0, |vj | ≤ λ/Mj

vj − λ/Mj , vj > λ/Mj

vj + λ/Mj , vj < −λ/Mj

.

To have efficient evaluation of the gradient (25), a practical imple-
mentation maintain the responses

ŷi := wT zi (27)

after each updatewt+1 := wt+d∗jej , so the cost for each coordinate-
wise minimization takesO(nnz(zj)) time for both gradient evalu-
ation and maintenance of (27), where zj := (zij)i∈[N ]. The algo-
rithm is summarized in Alg. 2, which just like the iterative solver
introduced in section 3.1, has cost O(nnz(Z)) for one pass of all
variables j ∈ [D].

4.2 Parallel Randomized Coordinate Descend
on Random Binning Features

The RCD, however, is hard to parallelize [21]. It is known that
simultaneous updates of two coordinates j1, j2 could lead to di-
vergence, and although one can enforce convergence by shortening
the step size 1

Mp
� 1

Mj
, the convergence rate will not be improved

with parallelization without additional assumption [1, 22].
On the other hand, in [22], it is shown that a function with par-

tially separable smooth term plus a separable non-smooth term

min
w∈RD

F (w) := Ω(w) +

N∑
i=1

fi(w) (28)

can be parallelized with guaranteed speedup in iteration complex-
ity, where Ω(w) is a non-smooth separable function and each func-
tion fi(w) is a smooth depends only on at most ω number of vari-
ables. The form (28), fortunately, fits our objective (23) with fea-
tures zi generated by RB. In particular, the generating process of
RB guarantees that, for each block of feature Bδ , the i-th sample
can fall in exactly one bin b = (bxn1−u1

δ1
c, ..., bxnd−ud

δd
c), there-

fore each sample inolves at most R features out of D. Specifically,
let Ω(w) := λ‖w‖1 and

fi(w) :=
1

N
L(wTzi, yi),

we have ω = R. Then by Theorem 19 of [22], a parallel RCD of
τ threads that selects coordinate j uniformly at random achieves a
speed-up (i.e. time-of-sequential/time-of-parallel) of

speedup-ratio =
τ

1 + (R−1)(τ−1)
D−1

. (29)

WhenD,R� 1, and τ = aκ̄+1 where κ̄ := D/R, (29) becomes

speedup-ratio =
aκ̄+ 1

1 + a
, (30)

which approaches κ̄ when a → ∞. Therefore, it is guaranteed in
theory that parallelization can speedup RCD significantly as long as
κ̄ = D/R � 1. We give our sparse RB Features algorithm based
on parallel RCD in Alg. 2. In our experiments, although a perfect
speedup of κ̄ is not achievable, the speedup of parallel RCD on RB
features is significantly larger than that for other random features.
Note that the speedup achieved in this section is orthogonal to the
faster convergence rate achieved in section 3, so by increasing κ,
the advantage of RB over other RF is super-linearly increasing in
the case of parallel RCD.

5. EXPERIMENTS
In this section, we present extensive sets of experiments to demon-

strate the efficiency and effectiveness of RB. The datasets are cho-
sen to overlap with those in other papers in the literature, where the
details are shown in the table 1. All sets except census are avail-
able at LIBSVM data set [2]. All computations are carried out on a
DELL dual socket with Intel Xeon processors at 2.93GHz for a total
of 16 cores and 250 GB of memory running the SUSE Linux op-
erating system. We implemented all methods in C++ and all dense
matrix operations are performed by using the optimized BLAS and
LAPACK routines provided in the OpenBLAS library. Due to the
limited space, we only choose subsets of our results to present in
each subsection. However, these results are objective and unbiased.

Table 1: Properties of the datasets.
Name C: Classes d: Features N : Train M : Test
cadata 1 8 16,512 4,128
census 1 119 18,186 2,273
ijcnn1 2 22 35,000 91,701

cod_rna 2 8 49,437 271,617
covtype 2 54 464,809 116,203
SUSY 2 18 4,000,000 1,000,000
mnist 10 780 60,000 10,000

acoustic 3 50 78,823 19,705
letter 26 16 10,500 5,000

5.1 Effects of σ and R on Random Binning



We perform experiments to investigate the characteristics of RB
by varying the kernel parameter λ and the rank R, respectively.
We use a regularization λ = 0.01 to make sure the reasonable
performance of RB and other low-rank kernels, although we found
that RB is not sensitive to this parameter. We increase the σ in the
large interval from 1e−2 to 1e2 so that the optimal σ locates within
the interval. We apply CG iterative solver to operate on Z directly.
In order to make fair runtime comparison in each run, we set the
tol = 1e− 15 to force similar CG iterations with different σ.

We evaluate the training and testing performance of regression
and classification, when varying σ with fixed R. In [19], it does
not consider the effect of σ in their analysis, which however has a
large impact on the performance since D depends on the number
of bins which is controlled by σ. Fig. 3 shows that the training
and testing performance coincidentally decrease (increase) before
they diverge when D grows by increasing σ. This confirms with
our analysis in Theorem 1 that the larger κ, the faster convergence
of RB Feature (recall that the convergence rate is O(1/κR)).

Second, one should not be surprised that the empirical training
time increases withD. The operations involving the weighting vec-
torwRB could become as expensive as a sparse matrix-vector oper-
ation in an iterative solver. However, the total computational costs
are still bounded by O(NR) but the constant factor may vary with
different datasets. Fortunately, in most of cases, the training time
corresponding to the peak performance is just slightly higher than
the smallest one. In practice, there are several ways to improve the
computation costs by exploiting more advanced sparse matrix tech-
niques such as preconditioning and efficient storage scheme, which
is out scope of this paper and left for future study.

Finally, we evaluate the training and testing performance when
varying R with fixed σ. Fig.4 shows that the training and testing
performance converge almost linearly with D, which again con-
firms our analysis in Theorem 1. In addition, we observe that RB
has strong overfit ability which turns out to be a strong attribute,
especially when the hypothesis space has not yet saturated.

5.2 Performance Comparisons of All Methods
We present a large sets of experiments to compare RB with other

most popular low-rank kernel approximations, including RF [19],
Nyström [29], and recently proposed independent block approxi-
mation [27]. We also compare all methods with the exact kernel as
a benchmark [24]. We do not report the results of the vanilla ker-
nel on covtype and SUSY since the programs run out of memory.
To make a fair comparison, we also apply CG on RB and Nys-
tröm directly on Z to admit similar computational costs. Since the
independent block kernel approximation approximates the kernel
matrix directly, we employ direct solver of dense matrix for this
method. In practice, the CG iterative solver has no need to solve
in high precision [3], which has also been observed in our experi-
ments. Thus, we set the tolerance to 1e− 3.

Fig.5 clearly demonstrates the superiority of RB compared to
other low-rank kernels. For example, in the first column, RB sig-
nificantly outperforms other methods in testing performance on
all of these datasets, especially when R is relatively small. This
is because RB enjoys much faster convergence rate to the opti-
mal function than other methods. The advantage generally dimin-
ishes when R increases to reasonably large. However, for some
large datasets such as covtype and SUSY, increasing number of
random features or R boosts the performance extremely slow. This
is consistent with our analysis that RB enjoys its fast convergence
rate of O(1/κR) while other methods has slow convergence rates
O(1/

√
R). The third and fourth columns further promote the in-

sights about how many number of random features or how large

rank R that is needed for achieving similar performance of RB. In
particular, RB is often between one and three orders of magnitude
faster and less memory consumptions than other methods.

In the second column, we also observe that the training time of
all low-rank kernels are linear with R, which is expected since all
these methods has computational complexity of O(kNR). The
difference in training time between these low-rank kernels is only
within some constant factors. However, we point out that the com-
putations of RF, Nyström and independent block approximation are
mainly carried out by the high-optimized BLAS library since they
are dense matrices. In contrast, the computations of RB are most
involved in sparse matrix operations, which are self-implemented
and not yet optimized. In addition, more advanced sparse matrix
techniques such as preconditioning can be explored to significantly
accelerate the computation, which we leave it as future work.

5.3 Parallel Performance of Random Binning
and Random Fourier

We perform experiments to compare RB with RF when using
RCD to solve L1-regularized Lasso and kernel SVM for both re-
gression and binary classification problems. Since the goal is to
demonstrate the strong parallel performance of RB, we implement
the basic parallel implementation of RCD based on simple shared
memory parallel programming model with OpenMP. We leave the
high-performance distributed RCD implementation as one of the
future works. We define the speedup of RCD on multicore imple-
mentation as follows:

speedup =
runtime of RCD using single core

runtime using P cores

As shown in Fig.6, when the sparsity level of the feature matrix Z
is high, the near-linear speedup can be achieved [17, 15]. This is
because the minimization problem can almost be separated along
the coordinate axes, then higher degrees of parallelism are possi-
ble. In contrast, if Z is lack of sparsity, then the penalty for data
correlations slows the speedup to none. This is confirmed by no
gain of parallel speedup of RF since Z is always fully dense. Ob-
viously, in order to empower strong parallel performance of RB, a
very large D is expected, which interestingly coincides with power
of its faster convergence. Therefore, one can enjoy the double ben-
efits of fast convergence and strong parallelizability of RB, which
is especially useful for very large-scale problems.

6. CONCLUSIONS
In this paper, we revisit RB features, an overlooked yet very

powerful random features, which we observe often to be orders
of magnitude faster than other random features and kernel approx-
imation methods to achieve the same accuracy. Motivated by these
impressive empirical results, we propose the first analysis of RB
from the perspective of optimization, to make a solid attempt to
quantify its faster convergence, which is not captured by tradi-
tional Monte-Carlo analysis. By interpreting RB as a RBCD in
the infinite-dimensional space, we show that by drawing R grids
with at least κ expected number of non-empty bins per grid, RB
achieves a convergence rate of O(1/κR). In addition, in the L1-
regularized setting, we demonstrate the sparse structure of RB fea-
tures allows RCD solver to be parallelized with guaranteed speedup
proportional to κ. Our extensive experiments demonstrate the su-
perior performance of the RB features over other random feature
and kernel approximation methods.
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Figure 3: Train and test performance, and train time when varying σ with fixed R. The black line and square box represent the best
test performance of the exact kernel and RB respectively.
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Figure 4: Train and test performance when varying R with fixed σ.

This work was done while L. Wu was a research intern at IBM
Research. J. Chen is supported in part by the XDATA program
of the Advanced Research Projects Agency (DARPA), adminis-
tered through Air Force Research Laboratory contract FA8750-12-
C-0323.

References
[1] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Par-

allel coordinate descent for l1-regularized loss minimization.
CoRR, abs/1105.5379, 2011.

[2] C. Chang and C. Lin. Libsvm: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Tech-



R
101 102 103

T
e
s
t 
E

rr
o
r 

%

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36
cadata: Test Error VS R

Rand Bin
Fourier
Nystrom
BlockDiag
Kernel

(a) cadata
R

101 102 103

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-3

10-2

10-1

100

101

102

103
cadata: Train Time VS R

Rand Bin

Fourier

Nystrom

BlockDiag

Kernel

(b) cadata
Test Error %

0.24 0.25 0.26 0.27 0.28 0.29 0.3

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-2

10-1

100

101

102

103

104
cadata: Train Time VS Test Error

RandBin

Fourier

Nystrom

BlockDiag

(c) cadata
Test Error %

0.24 0.25 0.26 0.27 0.28 0.29 0.3

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 E
s
ti
m

a
te

100

101

102

103

104

105
cadata: Memory Estimate VS Test Error

RandBin

Fourier

Nystrom

BlockDiag

(d) cadata

R
101 102 103

T
e
s
t 
A

c
c
u
ra

c
y
 %

89

90

91

92

93

94

95

96

97

98

99
ijcnn1: Test Accuracy VS R

RandBin

Fourier

Nystrom

BlockDiag

Kernel

(e) ijcnn1
R

101 102 103

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-2

10-1

100

101

102

103

104
ijcnn1: Train Time VS R

RandBin

Fourier

Nystrom

BlockDiag

Kernel

(f) ijcnn1
Test Accuracy %

95 95.5 96 96.5 97 97.5

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-1

100

101

102

103
ijcnn1: Train Time VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(g) ijcnn1
Test Accuracy %

95 95.5 96 96.5 97 97.5

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 E
s
ti
m

a
te

100

101

102

103

104

105
ijcnn1: Memory Estimate VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(h) ijcnn1

R
101 102 103

T
e
s
t 
A

c
c
u
ra

c
y
 %

55

60

65

70

75

80

85

90

95

100
covtype: Test Accuracy VS R

RandBin

Fourier

Nystrom

BlockDiag

(i) covtype
R

101 102 103

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-1

100

101

102

103
covtype: Train Time VS R

RandBin

Fourier

Nystrom

BlockDiag

(j) covtype
Test Accuracy %

60 65 70 75 80 85 90 95 100

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-1

100

101

102

103

104
covtype: Train Time VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(k) covtype
Test Accuracy %

60 65 70 75 80 85 90 95 100

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 E
s
ti
m

a
te

100

101

102

103

104

105
covtype: Memory Estimate VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(l) covtype

R
101 102 103

T
e
s
t 
A

c
c
u
ra

c
y
 %

55

60

65

70

75

80

85
SUSY: Test Accuracy VS R

RandBin

Fourier

Nystrom

BlockDiag

(m) SUSY
R

101 102 103

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

100

101

102

103

104
SUSY: Train Time VS R

RandBin

Fourier

Nystrom

BlockDiag

(n) SUSY
Test Accuracy %

55 60 65 70 75 80

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

100

101

102

103

104

105
SUSY: Train Time VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(o) SUSY
Test Accuracy %

55 60 65 70 75 80

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 E
s
ti
m

a
te

100

101

102

103

104
SUSY: Memory Estimate VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(p) SUSY

R
101 102 103

T
e
s
t 
A

c
c
u
ra

c
y
 %

40

50

60

70

80

90

100
mnist: Test Accuracy VS R

RandBin

Fourier

Nystrom

BlockDiag

Kernel

(q) mnist
R

101 102 103

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-1

100

101

102

103

104

105
mnist: Train Time VS R

RandBin

Fourier

Nystrom

BlockDiag

Kernel

(r) mnist
Test Accuracy %

86 88 90 92 94 96 98

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

100

101

102

103

104
mnist: Train Time VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(s) mnist
Test Accuracy %

86 88 90 92 94 96 98

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 E
s
ti
m

a
te

100

101

102

103

104

105
mnist: Memory Estimate VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(t) mnist

R
101 102 103

T
e
s
t 
A

c
c
u
ra

c
y
 %

55

60

65

70

75

80
acoustic: Test Accuracy VS R

RandBin

Fourier

Nystrom

BlockDiag

Kernel

(u) acoustic
R

101 102 103

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-2

10-1

100

101

102

103

104

105
acoustic: Train Time VS R

RandBin

Fourier

Nystrom

BlockDiag

Kernel

(v) acoustic
Test Accuracy %

74 75 76 77 78 79

T
ra

in
 T

im
e
 (

S
e
c
o
n
d
s
)

10-1

100

101

102

103

104
acoustic: Train Time VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(w) acoustic
Test Accuracy %

74 75 76 77 78 79

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 E
s
ti
m

a
te

100

101

102

103

104

105
acoustic: Memory Estimate VS Accuracy

RandBin

Fourier

Nystrom

BlockDiag

(x) acoustic

Figure 5: Comparisons among RB, RF, Nyström and Independent Block approximation. The first and second columns plot test
performance and train time when increasing R. The third and fourth columns plot the train time and memory consumptions when
achieving the desired test performance.
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Figure 6: Comparisons of parallel performance between RB and RF using RCD when increasing the number of threads.
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