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1 Convergence Proof

We rewrite the objective function here,

min
w

f(w) := λ‖w‖1 + `(w), (1)

Definition 1 (Constant Nullspace Strong Convexity). An composite function (1) is said to have
Constant Nullspace Strong Convexity (CNSC) restricted to space T (CNSC-T ) iff there is a constant
vector space T s.t. `(w) depends only on z = projT (w), i.e. `(w) = `(z), and its Hessian
satisfies

m‖v‖2 ≤ vTH(w)v ≤M‖v‖2, ∀v ∈ T ,∀w ∈ Rd (2)
for some M ≥ m > 0, and

H(w)v = 0, ∀v ∈ T ⊥,∀w ∈ Rd, (3)

where T ⊥ is the complementary space orthogonal to T .

To exploit the CNSC-T property, we first re-build our problem and algorithm on the reduced space
Z = {z ∈ Rd̂|z = UTw}, where the strong-convexity property holds. Then we prove the asymp-
totic super-linear convergence on Z under the condition that the inner problem is solved exactly and
no shrinking strategy is not applied. Finally we prove the objective (1) is bounded by the difference
between current iterate and the optimal solution. In Section 1.5, we provide the global convergence
proof when the shrinking strategy is applied.

1.1 Representing the problem in a reduced and compact space

Properties of CNSC-T condition
For `(w) satisfying CNSC-T condition, we have `(w) = `(projT (w)). Define g to be the gradient
of `(w) and H to be the Hessian of `(w). As both g and H are in the T space, we have g(w) =
UUTg(projT (w)) = g(projT (w)) and H(w) = UUTH(projT (w))UUT = H(projT (w)).

Objective formulation in the reduced space
Define ˆ̀(z) = `(Uz). Then if z = UTw, we have ˆ̀(z) = `(w), ĝ(z) = UTg(w) and Ĥ(z) =

UTH(w)U , where ĝ(z) and Ĥ(z) are the gradient and Hessian of ˆ̀(z) respectively. Now Ĥ is
positive definite with minimal eigenvalue m. The objective (1) can be re-formulated in the reduced
space by

min
z
f̂(z) = h(z) + ˆ̀(z), (4)

where
h(z) = min

UTw=z
λ‖w‖1
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We now prove that h(z) is a convex function, i.e.,

ch(z1) + (1− c)h(z2) ≥ h(cz1 + (1− c)z2)

for any 0 ≤ c ≤ 1, z1 and z2.

Proof. Let
w1 = argmin

UTw=z1

λ‖w‖1 and w2 = argmin
UTw=z2

λ‖w‖1

Then,

ch(z1) + (1− c)h(z2) = λ(c‖w1‖1 + (1− c)‖w2‖1)

≥ λ(‖cw1 + (1− c)w2‖1)

≥ h(UT (cw1 + (1− c)w2))

= h(cz1 + (1− c)z2)

The optimal solution z∗ of (4) has the following relationship with the optimal solution w∗ of (1) ,

w∗ = argmin
UTw=z∗

λ‖w‖1 and z∗ = UTw∗ (5)

Lipschitz continuity in the reduced space
Throughout the paper, we assume the Hessian of `(w) has Lipschitz continuity with constant LH .
According to the Lipschitz continuity,

‖H(w2)(w1 −w2)− (g(w1)− g(w2))‖ ≤ LH

2
‖w1 −w2‖2

In the corresponding reduced space, the Lipschitz continuity also holds with the same constant .

‖Ĥ(z2)(z1 − z2)− (ĝ(z1)− ĝ(z2))‖ ≤ LH

2
‖z1 − z2‖2 (6)

BFGS update formula in the reduced space
If B0 is in the T space, Bt is also in the T space. This can be shown by re-formulating the BFGS
update and mathematical induction,

Bt = UB̂t−1U
T −

UB̂t−1U
T st−1s

T
t−1UB̂t−1U

T

sTt−1UB̂t−1UT st−1
+
UUT yt−1y

T
t−1UU

T

yTt−1UU
T st−1

(7)

Thus

B̂t = B̂t−1 −
B̂t−1ŝt−1ŝ

T
t−1B̂t−1

ŝTt−1B̂t−1ŝt−1
+
ŷt−1ŷ

T
t−1

ŷTt−1ŝt−1
(8)

where ŝ = UT s, ŷ = UT y and UB̂tU
T = Bt. It can be proved that B̂t generated in (8) is positive

definite provided ŷT ŝ > 0 [2]. If we additionally assume m‖z‖2 ≤ zT B̂tz ≤ M‖z‖2 for any
z ∈ Rd̂, then Bt satisfies the CNSC-T condition.

Iterate in the reduced space
The potential new iterate w+ is

w+ = argmin
v

λ‖v‖1 +
1

2
(v −wt)

TBt(v −wt) + gT
t (v −wt) (9)

In the reduced space, the potential new iterate (9) can be represented by,

z+ = argmin
x

h(x) +
1

2
(x− zt)

T B̂t(x− zt) + ĝT
t (x− zt) (10)

z+ and w+ also satisfy Equation (5), i.e.

w+ = argmin
UTw=z+

‖w‖1 (11)

In this paper, we consider the convergence phase when zt is close enough to the optimum such that
the unit step size is always chosen, i.e. zt+1 = z+ [4].
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1.2 Global linear Convergence

Lemma 1 (Global linear Convergence). For ∇ˆ̀(z) satisfying Lipschitz-continuity with a constant
Lg and Bt satisfying CNSC-T , the sequence {zt}∞t=1 produced by Prox-QN method converges at
least R-linearly.

Proof. This theorem follows Theorem 2 in [6], where the coordinate block Jk is chosen to be the
whole coordinate set. Assumption 2(a) in [6] is satisfied because of Theorem 4 C4 in [6] by assuming
∇ˆ̀(z) is Lipschitz-continuous. Other conditions of Theorem 2 in [6] can be easily justified.

1.3 Quadratic Convergence of Proximal Newton Method and Dennis-More Criterion

Lemma 2 (Quadratic Convergence of Prox-Newton (Theorem 3 in [1])). For `(w) satisfying CNSC-
T with Lipschitz-continuous second derivative H(w) = ∇2`(w), the sequence {wt} produced by
proximal Newton Method in the quadratic convergence phase has

‖zt+1 − z∗‖ ≤ LH

2m
‖zt − z∗‖2,

where z∗ = UTw∗, zt = UTwt, w∗ is the optimal solution and LH is the Lipschitz constant for
H(w).

Lemma 3. If B0 = UB̂0U
T satisfies CNSC-T condition, then B̂t generated by (8) satisfies the

Dennis-More criterion [3], namely,

lim
t→∞

‖(B̂t − Ĥ∗)(zt+1 − zt)‖
‖zt+1 − zt‖

= 0,

where Ĥ∗ = ∇2 ˆ̀(z∗) and z∗ is the optimal solution of (4).

Proof. We want to show that this proof can follow the proof of Theorem 6.6 in [2]. We will verify
that the conditions of Theorem 6.6 in [2] are satisfied here. First, the Lipschitz continuity of Ĥ(z)
is implied by Lipschitz continuity of H(w) :

‖(Ĥ(z1)− Ĥ(z2))‖ = ‖UT (H(w1)−H(w2))U‖
≤ ‖H(w1)−H(w2)‖
= ‖H(Uz1)−H(Uz2)‖
≤ LH‖z1 − z2‖

where the last inequality is from the Lipschitz continuity of H(w). The second condition,∑∞
t=0 ‖zt − z∗‖ <∞, is implied by the global linear convergence(Lemma 1).

1.4 Asymptotic Superlinear Convergence

Proof of Theorem 1

Proof. If Bt satisfies CNSC-T condition, then B̂t satisfies m‖z‖2 ≤ zT B̂tz ≤ M‖z‖2 for any
z ∈ Rd̂. The Lipschitz-continuous H implies Lipschitz-continuity of Ĥ . Therefore by applying
the Prox-QN method in the reduced space, this theorem follows Theorem 3.7 in [4], Lemma 3 and
Lemma 2.

Proof of Theorem 2

Proof. We prove this theorem by showing |`(wt)− `(w∗)| ≤ L`‖zt− z∗‖ and ‖wt‖1−‖w∗‖1 ≤√
d‖zt − z∗‖. The first part is given by,

|`(wt)− `(w∗)| = |`(UUTwt)− `(UUTw∗)| ≤ L`‖UUT (wt −w∗)‖ = L`‖zt − z∗‖
where the inequality comes from the Lipschitz-continuity of `(w). In the super-linear convergence
phase, the unit step size is chosen, so each iterate satisfies (11). We have ‖wt‖1 ≤ ‖UUTwt +
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(I − UUT )w∗‖1. Moreover, due to the Lipschitz-continuity of `1 norm, which is ‖w‖1 − ‖v‖1 ≤√
d‖w − v‖, we have,

‖UUTwt + (I − UUT )w∗‖1 ≤ ‖w∗‖1 +
√
d‖UUTwt − UUTw∗‖

≤ ‖w∗‖1 +
√
d‖zt − z∗‖

1.5 Global Convergence with Shrinking

In Theorem 1, we assume shrinking strategy is not employed and the inner problem is solved exactly.
In this subsection, we show that by only assuming the inner problem is solved exactly, Prox-QN
method with shrinking will still globally converge to the optimum under the CNSC-T condition.
We first prove that with sufficient small step size, the Armijo rule will be satisfied.

Lemma 4. If the step size,

α ≤ min {1, m
L1

(1− σ)}

then the Armijo rule is satisfied, i.e.,

f(w + αd) ≤ f(w) + ασ(λ‖w + d‖1 − λ‖w‖1 + gTd)

where L1 is the Lipschitz-continuity constant.

Proof. Let w+ = w + αd,

f(w+)− f(w) = `(w+)− `(w) + λ(‖w+‖1 − ‖w‖1)

≤
∫ 1

0

∇`(w + sαd)(αd)ds+ αλ‖w + d‖1 + (1− α)λ‖w‖1 − λ‖w‖1

= α(∇`(w)Td + λ‖w + d‖1 − λ‖w‖1) + α

∫ 1

0

dT (∇`(w + sαd)−∇`(w))ds

≤ α(∇`(w)Td + λ‖w + d‖1 − λ‖w‖1) + α

∫ 1

0

‖UTd‖‖∇`(w + sαd)−∇`(w)‖ds

Because

‖∇`(w + sαd)−∇`(w)‖ = ‖∇`(UUTw + sαUUTd)−∇`(UUTw)‖ ≤ sL1‖UTd‖

we have

f(w+)− f(w) ≤ α
(

(∇`(w)Td + λ‖w + d‖1 − λ‖w‖1) +
L1α

2
‖UTd‖2

)
For α ≤ min {1, m

L1
(1− σ)},

L1α

2
‖UTd‖2 ≤ m

2
(1− σ)‖UTd‖2 ≤ 1− σ

2
dTBd

As d minimizes Eq. (2) in the main paper, we have 1
2d

TBd ≤ −(∇`(w)Td+λ‖w+d‖1−λ‖w‖1).
So we obtain the sufficient descent condition,

f(w+)− f(w) ≤ ασ
(
∇`(w)Td + λ‖w + d‖1 − λ‖w‖1

)

Proposition 1. Assume ∇2`(w) and ∇`(w) are Lipschitz continuous. Let {Bt}t=1,2,3... be the
matrices generated by BFGS update. Then if `(w) and Bt satisfy CNSC-T condition and the inner
problem is solved exactly, the proximal quasi-Newton method with shrinking has global convergence.
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Proof. Our algorithm allows all the variables to re-enter the working set at the beginning of each
epoch. And before it terminates all the variables must be checked. Thus as many as epochs are
taken in the optimization procedure until the global stopping criterion is attained. Let’s denote
{tk}k=0,1,2,3... to be the iterations when an epochs begins. In these iterations, all the variables are
taken into consideration. As shown in Lemma 4, there exists some constant α0,

f(wtk+1)− f(wtk) ≤ α0σ
(
∇`(wtk)Tdtk + λ‖wtk + dtk‖1 − λ‖wtk‖1

)
And as in each epoch the function value is non-increasing across the iterations, i.e. for any k,
f(wtk+1

) ≤ f(wtk+1). Thus, we have

f(wtK+1)− f(wt0) ≤
K∑

k=0

f(wtk+1)− f(wtk) ≤ −α0σ

K∑
k=0

dT
tk
Btkdtk

As f(wtK+1) − f(wt0) > −∞, limk→∞ dT
tk
Btkdtk = 0. Thus, UTdtk → 0. That is to say,

limk→∞ dtk ∈ T ⊥. If dt ∈ T ⊥, the line search procedure will always pick unit step size. And
in the next iteration, dt+1 = 0. So when UTdtk → 0, we also have dtk → 0. Therefore, wtk
converges to the optimum according to Proposition 2.5 in [4].
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2 Algorithm Details

Algorithm 1 Proximal Quasi-Newton Algorithm

Input: Observations {x(i)}i=1,2,...,N , labels {y(i)}i=1,2,...,N , termination criterion ε, scalar λ and
L-BFGS memory size m.

Output: w∗ converging to arg minwf(w)

1: Initialize γ = 1, w ← 0, g ← ∂`(w)/∂w, working set A ← {1, 2, ...d}, M̂ ← ∞, and S, Y ,
Q, Q̂← φ.

2: for n = 0, 1, ... do
3: Â ← A, A ← φ, M ← 0
4: for j in Â do . Shrink the working set
5: calculate ∂jf

∂jf(w) =

{
gj + sgn(wj)λ if wj 6= 0

sgn(gj) max{|gj | − λ, 0} if wj = 0
(12)

6: if wj 6= 0 or |gj | − λ+ M̂/N > 0 then
7: A ← A∪ j, M ← max{M, |∂jf |}
8: end if
9: end for

10: M̂ ←M
11: if Shrinking stopping criterion attained then . Check shrinking stopping criterion
12: if Stopping criterion attained and |Â| = d then . Check global stopping criterion
13: return w
14: else
15: g ← ∂`(w)/∂w, A ← {1, 2, ...d} and S, Y , Q, Q̂← φ
16: Update shrinking stopping criterion and then continue
17: end if
18: end if
19: d← 0, d̂← 0
20: Compute inner iter = min{max inner, b d

|A|c}
21: for p = 1, 2, ...inner iter do . Solve inner problem
22: for j in A do
23: Bjj = γ − qT

j q̂j , (Bd)j = γdj − qT
j d̂

24: a = (Bt)jj , b = (gt)j + (Btd)j and c = (wt)j + dj
25: Compute z according to z = −c+ S(c− b/a, λ/a)

26: dj ← dj + z, d̂← d̂ + zq̂j
27: end for
28: end for
29: for α = β0, β1, .... do . Conduct line search
30: if f(w + αd) ≤ f(w) + ασ(λ‖w + d‖1 − λ‖w‖1 + gTd) then
31: break
32: end if
33: end for
34: for j in A do
35: gnewj = ∂`(w)/∂wj , yj = gnewj − gj , sj = αdj , gj = gnewj
36: end for
37: Update S, Y and Q just on the rows corresponding to A.
38: Update γ, D, L, STS where the inner product between s and another vector is computed

just over A.
39: Update R and then update Q̂ just on the columns corresponding to A.
40: end for
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3 Proof of Theorem 3

Proof. The Hessian of `(w) for CRF MLEs is

H =

N∑
i=1

(
E
[
φ(y,x(i))φ(y,x(i))T

]
− E

[
φ(y,x(i))

]
E
[
φ(y,x(i))

]T)
, (13)

where φ(y,x(i)) =
[
f1(y,x(i)), f2(y,x(i)), ..., fd(y,x(i))

]T
and E is the expectation over the

conditional probability Pw(y|x(i)). Now we re-formulate (13) to

H = ΦDΦ

Here D ∈ R(N |Y|)×(N |Y|) is a diagonal matrix with diagonal elements Dnn = Pw(yl|x(i)), where
n = (i − 1)|Y| + l and l = 1, 2, .., |Y|. Φ is a d × (N |Y|) matrix whose column n is defined as
Φn = φ(yl,x

(i))− E
[
φ(y,x(i)

]
for n = (i− 1)|Y|+ l.

The theorem holds because of the following four reasons.
a. N is constant with respect to w.
N is equivalent to

N = {a ∈ Rd|∀i,∃ some constant bi, 〈a, φ(y,x(i))〉 = bi for ∀y} (14)

Thus N is independent on w and so is T .
b. `(w) depends only on z = projT (w).
Let w = z + u. So u ∈ N .

Pw(y(i)|x(i)) =
exp

{
〈w, φ(y(i),x(i))〉

}∑
y exp

{
〈w, φ(y,x(i))〉

}
=

exp
{
〈z, φ(y(i),x(i))〉

}
exp

{
〈u, φ(y(i),x(i))〉

}∑
y exp

{
〈z, φ(y,x(i))〉

}
exp

{
〈u, φ(y,x(i))〉

}
=

exp
{
〈z, φ(y(i),x(i))〉

}∑
y exp

{
〈z, φ(y,x(i))〉

}
The last equality comes from the character of N , Equation (14).

c. The first property Eq. (2) holds.
Dnn → 0 iff ‖w‖1 → ∞ which is prohibited by `1 penalty. Thus there exists mp > 0 such that
Dnn ≥ mp for any n. Hence, the positive definiteness of H is determined by Φ.
So we have for any v ∈ T ,

mpλmin(ΦΦT )‖v‖2 ≤ mpv
T ΦΦTv ≤ vTHv ≤ vT ΦΦTv ≤ λmax(ΦΦT )‖v‖2

where λmin(ΦΦT ) is the minimum nonzero eigenvalue of ΦΦT and λmax(ΦΦT ) is the maximum
eigenvalue of ΦΦT .
d. The second property Eq. (3) holds.
This property directly follows the definition of N .

4 Gradient evaluation in sequence labeling and hierarchical classification

The gradients for general CRF problems are given by

∂`(w)

∂wk
=

N∑
i=1

∑
y∈Y

Pw(y|x(i))fk(y,x(i))− fk(y(i),x(i))

 (15)
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4.1 Sequence labeling

The partial gradients of `(w) for sequence labeling problem are,

∂l(Θ,Λ)

∂Θy,j
=

N∑
i=1

T (i)∑
t=1

(
Pw(yt = y|x(i))− 1

[
y
(i)
t = y

])
x
(i)
tj (16)

∂l(Θ,Λ)

∂Λy,y′
=

N∑
i=1

T (i)−1∑
t=1

(
Pw(yt = y, yt+1 = y′|x(i))− 1

[
y
(i)
t = y, y

(i)
t+1 = y′

])
(17)

The forward-backward algorithm is a popular inference oracle for evaluating the marginal probabil-
ity in Equation (16) and (17). In our OCR model, the forward-backward algorithm is{

α1(y) = exp(ΘT
y x1)

αt+1(y) =
∑

y′ αt(y
′) exp(ΘT

y xt+1 + Λy′,y){
βT (y) = 1

βt(y
′) =

∑
y βt+1(y) exp(ΘT

y xt+1 + Λy′,y)

where ΘT
y is the y-th row of the matrix Θ. Then the marginal conditional probabilities are given by

Pw(yt = y′, yt+1 = y|x) =
1

Zw(x)
αt(y

′) exp(Θyxt+1 + Λy′,y)βt+1(y)

Pw(yt = y|x) =
1

Zw(x)
αt(y)βt(y),

where the normalization factor Zw(x) can be computed by
∑

y αT (y).

4.2 Hierarchical classification

The partial gradients of `(W ) for hierarchical classification problem are,

∂`(W )

∂Wk,j
=

N∑
i=1

∑
y∈Y

1 [k ∈ Path(y)]PW (y|x(i))− 1
[
k ∈ Path(y(i))

]x
(i)
j

They can be evaluated by the downward-upward algorithm. Let α(k) and β(k) be the downward
message and upward message respectively.

{
α(root) = wT

rootx

α(k) = α (parent(k)) + wT
k x{

β(k) = α(k)/
∑

y∈Y α(y) if k is a leaf node
β(k) =

∑
k′∈children(k) β(k′) if k is a non-leaf node

So we have
∂`(W )

∂Wk,j
=

N∑
i=1

(
β(i)(k)− 1

[
k ∈ Path(y(i))

])
x
(i)
j (18)

5 More Experimental Results

5.1 Performance on different values of λ

λ affects the sparsity of the intermediate iterates, and further the speed of the algorithm. In particular,
when λ is larger, the intermediate iterates are sparser, and then the corresponding iterations, due to
the shrinking strategy, will be faster – and vice versa. The effect of λ on the performance is shown
in this section.
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5.1.1 Sequence Labeling
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Figure 1: Sequence Labeling Problem for λ = 500
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Figure 2: Sequence Labeling Problem for λ = 50
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5.1.2 Hierarchical Classification
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Figure 3: Hierarchical Classification Problem for λ = 2
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Figure 4: Hierarchical Classification Problem for λ = 0.5

5.2 Testing Accuracy

The testing accuracy for different λ’s on these two problems is in the following tables. The testing
accuracy across training time is shown in Figure 5.

λ 50 100 500
Testing Accuracy 0.834928 0.736643 0.407895
nnz of optimum 2542 1544 223

Table 1: Per-character testing accuracy for OCR dataset
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λ 0.5 1 2
Testing Accuracy 0.262648 0.249731 0.185684
nnz of optimum 28483 4301 1505

Table 2: Testing accuracy for LSHTC1 dataset
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(a) OCR dataset with λ = 100
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(b) LSHTC1 dataset with λ = 1

Figure 5: Testing accuracy v.s. training time

5.3 Relative objective difference v.s. the number of passes over dataset

Figure 6 shows the performance under the measure of number of passes (iterations) over dataset. We
do not include the plot for BCD method, because the pass over dataset for BCD actually depends on
the sparsity pattern of the dataset. Thus it is hard to fairly define the pass over dataset for BCD. In
this experiment, shrinking strategy is not applied.
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Figure 6: Relative objective difference v.s. the number of passes over dataset for OCR dataset with
λ = 100.
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