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Abstract

We consider the class of optimization problems arising from computationally in-
tensive `1-regularized M -estimators, where the function or gradient values are
very expensive to compute. A particular instance of interest is the `1-regularized
MLE for learning Conditional Random Fields (CRFs), which are a popular class
of statistical models for varied structured prediction problems such as sequence
labeling, alignment, and classification with label taxonomy. `1-regularized MLEs
for CRFs are particularly expensive to optimize since computing the gradient val-
ues requires an expensive inference step. In this work, we propose the use of a
carefully constructed proximal quasi-Newton algorithm for such computationally
intensive M -estimation problems, where we employ an aggressive active set se-
lection technique. In a key contribution of the paper, we show that the proximal
quasi-Newton method is provably super-linearly convergent, even in the absence
of strong convexity, by leveraging a restricted variant of strong convexity. In our
experiments, the proposed algorithm converges considerably faster than current
state-of-the-art on the problems of sequence labeling and hierarchical classifica-
tion.

1 Introduction
`1-regularized M -estimators have attracted considerable interest in recent years due to their ability
to fit large-scale statistical models, where the underlying model parameters are sparse. The opti-
mization problem underlying these `1-regularized M -estimators takes the form:

min
w

f(w) := λ‖w‖1 + `(w), (1)

where `(w) is a convex differentiable loss function. In this paper, we are particularly interested in the
case where the function or gradient values are very expensive to compute; we refer to these functions
as computationally intensive functions, or CI functions in short. A particular case of interest are `1-
regularized MLEs for Conditional Random Fields (CRFs), where computing the gradient requires
an expensive inference step.

There has been a line of recent work on computationally efficient methods for solving (1), including
[2, 8, 13, 21, 23, 4]. It has now become well understood that it is key to leverage the sparsity
of the optimal solution by maintaining sparse intermediate iterates [2, 5, 8]. Coordinate Descent
(CD) based methods, like CDN [8], maintain the sparsity of intermediate iterates by focusing on an
active set of working variables. A caveat with such methods is that, for CI functions, each coordinate
update typically requires a call of inference oracle to evaluate partial derivative for single coordinate.
One approach adopted in [16] to address this is using Blockwise Coordinate Descent that updates
a block of variables at a time by ignoring the second-order effect, which however sacrifices the
convergence guarantee. Newton-type methods have also attracted a surge of interest in recent years
[5, 13], but these require computing the exact Hessian or Hessian-vector product, which is very
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expensive for CI functions. This then suggests the use of quasi-Newton methods, popular instances
of which include OWL-QN [23], which is adapted from `2-regularized L-BFGS, as well as Projected
Quasi-Newton (PQN) [4]. A key caveat with OWL-QN and PQN however is that they do not exploit
the sparsity of the underlying solution. In this paper, we consider the class of Proximal Quasi-
Newton (Prox-QN) methods, which we argue seem particularly well-suited to such CI functions, for
the following three reasons. Firstly, it requires gradient evaluations only once in each outer iteration.
Secondly, it is a second-order method, which has asymptotic superlinear convergence. Thirdly, it
can employ some active-set strategy to reduce the time complexity from O(d) to O(nnz), where d
is the number of parameters and nnz is the number of non-zero parameters.

While there has been some recent work on Prox-QN algorithms [2, 3], we carefully construct an
implementation that is particularly suited to CI `1-regularized M -estimators. We carefully main-
tain the sparsity of intermediate iterates, and at the same time reduce the gradient evaluation time.
A key facet of our approach is our aggressive active set selection (which we also term a ”shrink-
ing strategy”) to reduce the number of active variables under consideration at any iteration, and
correspondingly the number of evaluations of partial gradients in each iteration. Our strategy is
particularly aggressive in that it runs over multiple epochs, and in each epoch, chooses the next
working set as a subset of the current working set rather than the whole set; while at the end of an
epoch, allows for other variables to come in. As a result, in most iterations, our aggressive shrinking
strategy only requires the evaluation of partial gradients in the current working set. Moreover, we
adapt the L-BFGS update to the shrinking procedure such that the update can be conducted without
any loss of accuracy caused by aggressive shrinking. Thirdly, we store our data in a feature-indexed
structure to combine data sparsity as well as iterate sparsity.

[26] showed global convergence and asymptotic superlinear convergence for Prox-QN methods un-
der the assumption that the loss function is strongly convex. However, this assumption is known to
fail to hold in high-dimensional sampling settings, where the Hessian is typically rank-deficient, or
indeed even in low-dimensional settings where there are redundant features. In a key contribution
of the paper, we provide provable guarantees of asymptotic superlinear convergence for Prox-QN
method, even without assuming strong-convexity, but under a restricted variant of strong convex-
ity, termed Constant Nullspace Strong Convexity (CNSC), which is typically satisfied by standard
M -estimators.

To summarize, our contributions are twofold. (a) We present a carefully constructed proximal quasi-
Newton method for computationally intensive (CI) `1-regularized M -estimators, which we empir-
ically show to outperform many state-of-the-art methods on CRF problems. (b) We provide the
first proof of asymptotic superlinear convergence for Prox-QN methods without strong convexity,
but under a restricted variant of strong convexity, satisfied by typical M -estimators, including the
`1-regularized CRF MLEs.

2 Proximal Quasi-Newton Method

A proximal quasi-Newton approach to solve M -estimators of the form (1) proceeds by iteratively
constructing a quadratic approximation of the objective function (1) to find the quasi-Newton direc-
tion, and then conducting a line search procedure to obtain the next iterate.

Given a solution estimate wt at iteration t, the proximal quasi-Newton method computes a descent
direction by minimizing the following regularized quadratic model,

dt = arg min
∆

gT
t ∆ +

1

2
∆TBt∆ + λ‖wt + ∆‖1 (2)

where gt = g(wt) is the gradient of `(wt) and Bt is an approximation to the Hessian of `(w). Bt

is usually formulated by the L-BFGS algorithm. This subproblem (2) can be efficiently solved by
randomized coordinate descent algorithm as shown in Section 2.2.

The next iterate is obtained from the backtracking line search procedure, wt+1 = wt +αtdt, where
the step size αt is tried over {β0, β1, β2, ...} until the Armijo rule is satisfied,

f(wt + αtdt) ≤ f(wt) + αtσ∆t,

where 0 < β < 1, 0 < σ < 1 and ∆t = gT
t dt + λ(‖wt + dt‖1 − ‖wt‖1).
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2.1 BFGS update formula
Bt can be efficiently updated by the gradients of the previous iterations according to the BFGS
update [18],

Bt = Bt−1 −
Bt−1st−1s

T
t−1Bt−1

sTt−1Bt−1st−1
+

yt−1y
T
t−1

yT
t−1st−1

(3)

where st = wt+1 −wt and yt = gt+1 − gt
We use the compact formula for Bt [18],

Bt = B0 −QRQT = B0 −QQ̂,

where

Q := [ B0St Yt ] , R :=

[
ST
t B0St Lt

LT
t −Dt

]−1

, Q̂ := RQT

St = [s0, s1, ..., st−1] , Yt =
[
y0,y1, ...,yt−1

]
Dt = diag[sT0 y0, ..., s

T
t−1yt−1] and (Lt)i,j =

{
sTi−1yj−1 if i > j

0 otherwise

In practical implementation, we apply Limited-memory-BFGS. It only uses the information of the
most recent m gradients, so that Q and Q̂ have only size, d × 2m and 2m × d, respectively. B0 is
usually set as γtI for computing Bt, where γt = yT

t−1st−1/s
T
t−1st−1[18]. As will be discussed in

Section 2.3, Q(Q̂) is updated just on the rows(columns) corresponding to the working set, A. The
time complexity for L-BFGS update is O(m2|A|+m3).

2.2 Coordinate Descent for Inner Problem
Randomized coordinate descent is carefully employed to solve the inner problem (2) by Tang and
Scheinberg [2]. In the update for coordinate j, d ← d + z∗ej , z∗ is obtained by solving the one-
dimensional problem,

z∗ = arg min
z

1

2
(Bt)jjz

2 + ((gt)j + (Btd)j)z + λ|(wt)j + dj + z|

This one-dimensional problem has a closed-form solution, z∗ = −c+ S(c− b/a, λ/a) ,where S is
the soft-threshold function and a = (Bt)jj , b = (gt)j +(Btd)j and c = (wt)j +dj . For B0 = γtI ,
the diagonal of Bt can be computed by (Bt)jj = γt − qT

j q̂j , where qT
j is the j-th row of Q and q̂j

is the j-th column of Q̂. And the second term in b, (Btd)j can be computed by,

(Btd)j = γtdj − qT
j Q̂d = γtdj − qT

j d̂,

where d̂ := Q̂d. Since d̂ has only 2m dimension, it is fast to update (Btd)j by qj and d̂. In each
inner iteration, only dj is updated, so we have the fast update of d̂, d̂← d̂ + q̂jz

∗.

Since we only update the coordinates in the working set, the above algorithm has only computation
complexity O(m|A| × inner iter), where inner iter is the number of iterations used for solving
the inner problem.

2.3 Implementation
In this section, we discuss several key implementation details used in our algorithm to speed up the
optimization.

Shrinking Strategy
In each iteration, we select an active or working subsetA of the set of all variables: only the variables
in this set are updated in the current iteration. The complementary set, also called the fixed set, has
only values of zero and is not updated. The use of such a shrinking strategy reduces the overall
complexity from O(d) to O(|A|). Specifically, we (a) update the gradients just on the working set,
(b) update Q (Q̂) just on the rows(columns) corresponding to the working set, and (c) compute the
latest entries in Dt, γt, Lt and ST

t St by just using the corresponding working set rather than the
whole set.
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The key facet of our “shrinking strategy” however is in aggressively shrinking the active set: at the
next iteration, we set the active set to be a subset of the previous active set, so thatAt ⊂ At−1. Such
an aggressive shrinking strategy however is not guaranteed to only weed out irrelevant variables.
Accordingly, we proceed in epochs. In each epoch, we progressively shrink the active set as above,
till the iterations seem to converge. At that time, we then allow for all the “shrunk” variables to
come back and start a new epoch. Such a strategy was also called an ε-cooling strategy by Fan et
al. [14], where the shrinking stopping criterion is loose at the beginning, and progressively becomes
more strict each time all the variables are brought back. For L-BFGS update, when a new epoch
starts, the memory of L-BFGS is cleaned to prevent any loss of accuracy.

Because at the first iteration of each new epoch, the entire gradient over all coordinates is evalu-
ated, the computation time for those iterations accounts for a significant portion of the total time
complexity. Fortunately, our experiments show that the number of epochs is typically between 3-5.

Inexact inner problem solution
Like many other proximal methods, e.g. GLMNET and QUIC, we solve the inner problem inexactly.
This reduces the time complexity of the inner problem dramatically. The amount of inexactness is
based on a heuristic method which aims to balance the computation time of the inner problem in each
outer iteration. The computation time of the inner problem is determined by the number of inner
iterations and the size of working set. Thus, we let the number of inner iterations, inner iter =
min{max inner, bd/|A|c}, where max inner = 10 in our experiment.

Data Structure for both model sparsity and data sparsity
In our implementation we take two sparsity patterns into consideration: (a) model sparsity, which
accounts for the fact that most parameters are equal to zero in the optimal solution; and (b) data
sparsity, wherein most feature values of any particular instance are zeros. We use a feature-indexed
data structure to take advantage of both sparsity patterns. Computations involving data will be time-
consuming if we compute over all the instances including those that are zero. So we leverage the
sparsity of data in our experiment by using vectors of pairs, whose members are the index and its
value. Traditionally, each vector represents an instance and the indices in its pairs are the feature
indices. However, in our implementation, to take both model sparsity and data sparsity into account,
we use an inverted data structure, where each vector represents one feature (feature-indexed) and
the indices in its pairs are the instance indices. This data structure facilitates the computation of the
gradient for a particular feature, which involves only the instances related to this feature.

We summarize these steps in the algorithm below. And a detailed algorithm is in Appendix B.

Algorithm 1 Proximal Quasi-Newton Algorithm (Prox-QN)

Input: Dataset {x(i),y(i)}i=1,2,...,N , termination criterion ε, λ and L-BFGS memory size m.
Output: w∗ converging to arg minwf(w).

1: Initialize w ← 0, g ← ∂`(w)/∂w, working set A ← {1, 2, ...d}, and S, Y , Q, Q̂← φ.
2: while termination criterion is not satisfied or working set doesn’t contain all the variables do
3: Shrink working set.
4: if Shrinking stopping criterion is satisfied then
5: Take all the shrunken variables back to working set and clean the memory of L-BFGS.
6: Update Shrinking stopping criterion and continue.
7: end if
8: Solve inner problem (2) over working set and obtain the new direction d.
9: Conduct line search based on Armijo rule and obtain new iterate w.

10: Update g, s, y, S, Y , Q, Q̂ and related matrices over working set.
11: end while

3 Convergence Analysis
In this section, we analyze the convergence behavior of proximal quasi-Newton method in the super-
linear convergence phase, where the unit step size is chosen. To simplify the analysis, in this section,
we assume the inner problem is solved exactly and no shrinking strategy is employed. We also
provide the global convergence proof for Prox-QN method with shrinking strategy in Appendix
A.5. In current literature, the analysis of proximal Newton-type methods relies on the assumption of
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strongly convex objective function to prove superlinear convergence [3]; otherwise, only sublinear
rate can be proved [25]. However, our objective (1) is not strongly convex when the dimension is
very large or there are redundant features. In particular, the Hessian matrix H(w) of the smooth
function `(w) is not positive-definite. We thus leverage a recently introduced restricted variant of
strong convexity, termed Constant Nullspace Strong Convexity (CNSC) in [1]. There the authors
analyzed the behavior of proximal gradient and proximal Newton methods under such a condition.
The proximal quasi-Newton procedure in this paper however requires a subtler analysis, but in a key
contribution of the paper, we are nonetheless able to show asymptotic superlinear convergence of
the Prox-QN method under this restricted variant of strong convexity.
Definition 1 (Constant Nullspace Strong Convexity (CNSC)). A composite function (1) is said to
have Constant Nullspace Strong Convexity restricted to space T (CNSC-T ) if there is a constant
vector space T s.t. `(w) depends only on projT (w), i.e. `(w) = `(projT (w)), and its Hessian
satisfies

m‖v‖2 ≤ vTH(w)v ≤M‖v‖2, ∀v ∈ T ,∀w ∈ Rd (4)
for some M ≥ m > 0, and

H(w)v = 0, ∀v ∈ T ⊥,∀w ∈ Rd, (5)

where projT (w) is the projection of w onto T and T ⊥ is the complementary space orthogonal to
T .
This condition can be seen to be an algebraic condition that is satisfied by typicalM -estimators con-
sidered in high-dimensional settings. In this paper, we will abuse the use of CNSC-T for symmetric
matrices. We say a symmetric matrix H satisfies CNSC-T condition if H satisfies (4) and (5). In
the following theorems, we will denote the orthogonal basis of T as U ∈ Rd×d̂, where d̂ ≤ d is
the dimensionality of T space and UTU = I . Then the projection to T space can be written as
projT (w) = UUTw.
Theorem 1 (Asymptotic Superlinear Convergence). Assume∇2`(w) and∇`(w) are Lipschitz con-
tinuous. LetBt be the matrices generated by BFGS update (3). Then if `(w) andBt satisfy CNSC-T
condition, the proximal quasi-Newton method has q-superlinear convergence:

‖zt+1 − z∗‖ ≤ o (‖zt − z∗‖) ,
where zt = UTwt, z∗ = UTw∗ and w∗ is an optimal solution of (1).
The proof is given in Appendix A.4. We prove it by exploiting the CNSC-T property. First, we
re-build our problem and algorithm on the reduced space Z = {z ∈ Rd̂|z = UTw}, where
the strong-convexity property holds. Then we prove the asymptotic superlinear convergence on Z
following Theorem 3.7 in [26].
Theorem 2. For Lipschitz continuous `(w), the sequence {wt} produced by the proximal quasi-
Newton Method in the super-linear convergence phase has

f(wt)− f(w∗) ≤ L‖zt − z∗‖, (6)

where L = L` + λ
√
d, L` is the Lipschitz constant of `(w), zt = UTwt and z∗ = UTw∗.

The proof is also in Appendix A.4. It is proved by showing that both the smooth part and the
non-differentiable part satisfy the modified Lipschitz continuity.

4 Application to Conditional Random Fields with `1 Penalty
In CRF problems, we are interested in learning a conditional distribution of labels y ∈ Y given
observation x ∈ X , where y has application-dependent structure such as sequence, tree, or table in
which label assignments have inter-dependency. The distribution is of the form

Pw(y|x) =
1

Zw(x)
exp

{
d∑

k=1

wkfk(y,x)

}
,

where fk is the feature functions, wk is the associated weight, d is the number of feature functions
and Zw(x) is the partition function. Given a training data set {(xi,yi)}Ni=1, our goal is to find the
optimal weights w such that the following `1-regularized negative log-likelihood is minimized.

min
w

f(w) = λ‖w‖1 −
N∑
i=1

logPw(y(i)|x(i)) (7)
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Since |Y|, the number of possible values y takes, can be exponentially large, the evaluation of
`(w) and the gradient ∇`(w) needs application-dependent oracles to conduct the summation over
Y . For example, in sequence labeling problem, a dynamic programming oracle, forward-backward
algorithm, is usually employed to compute ∇`(w). Such an oracle can be very expensive. In Prox-
QN algorithm for sequence labeling problem, the forward-backward algorithm takes O(|Y |2NT ×
exp) time, where exp is the time for the expensive exponential computation, T is the sequence
length and Y is the possible label set for a symbol in the sequence. Then given the obtained oracle,
the evaluation of the partial gradients over the working set A has time complexity, O(Dnnz|A|T ),
where Dnnz is the average number of instances related to a feature. Thus when O(|Y |2NT ×exp+
Dnnz|A|T ) > O(m3 +m2|A|), the gradients evaluation time will dominate.

The following theorem gives that the `1-regularized CRF MLEs satisfy the CNSC-T condition.

Theorem 3. With `1 penalty, the CRF loss function, `(w) = −
∑N

i=1 logPw(y(i)|x(i)), satisfies
the CNSC-T condition with T = N⊥, where N = {v ∈ Rd|ΦTv = 0} is a constant subspace of
Rd and Φ ∈ Rd×(N |Y|) is defined as below,

Φkn = fk(yl,x
(i))− E

[
fk(y,x(i))

]
where n = (i− 1)|Y| + l, l = 1, 2, ...|Y| and E is the expectation over the conditional probability
Pw(y|x(i)).

According to the definition of CNSC-T condition, the `1-regularized CRF MLEs don’t satisfy
the classical strong-convexity condition when N has non-zero members, which happens in the
following two cases: (i) the exponential representation is not minimal [27], i.e. for any in-
stance i there exist a non-zero vector a and a constant bi such that 〈a, φ(y,x(i))〉 = bi, where
φ(y,x) = [f1(y,x(i)), f2(y,x(i)), ..., fd(y,x(i))]T ; (ii) d > N |Y|, i.e., the number of feature
functions is very large. The first case holds in many problems, like the sequence labeling and hi-
erarchical classification discussed in Section 6, and the second case will hold in high-dimensional
problems.

5 Related Methods
There have been several methods proposed for solving `1-regularized M -estimators of the form in
(7). In this section, we will discuss these in relation to our method.

Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) introduced by Andrew and Gao [23]
extends L-BFGS to `1-regularized problems. In each iteration, OWL-QN computes a generalized
gradient called pseudo-gradient to determine the orthant and the search direction, then does a line
search and a projection of the new iterate back to the orthant. Due to its fast convergence, it is
widely implemented by many software packages, such as CRF++, CRFsuite and Wapiti. But OWL-
QN does not take advantage of the model sparsity in the optimization procedure, and moreover Yu
et al. [22] have raised issues with its convergence proof.
Stochastic Gradient Descent (SGD) uses the gradient of a single sample as the search direction
at each iteration. Thus, the computation for each iteration is very fast, which leads to fast conver-
gence at the beginning. However, the convergence becomes slower than the second-order method
when the iterate is close to the optimal solution. Recently, an `1-regularized SGD algorithm pro-
posed by Tsuruoka et al.[21] is claimed to have faster convergence than OWL-QN. It incorporates
`1-regularization by using a cumulative `1 penalty, which is close to the `1 penalty received by the
parameter if it had been updated by the true gradient. Tsuruoka et al. do consider data sparsity, i.e.
for each instance, only the parameters related to the current instance are updated. But they too do
not take the model sparsity into account.
Coordinate Descent (CD) and Blockwise Coordinate Descent (BCD) are popular methods for `1-
regularized problem. In each coordinate descent iteration, it solves an one-dimensional quadratic
approximation of the objective function, which has a closed-form solution. It requires the second
partial derivative with respect to the coordinate. But as discussed by Sokolovska et al., the exact
second derivative in CRF problem is intractable. So they instead use an approximation of the second
derivative, which can be computed efficiently by the same inference oracle queried for the gradient
evaluation. However, pure CD is very expensive because it requires to call the inference oracle for
the instances related to the current coordinate in each coordinate update. BCD alleviates this prob-
lem by grouping the parameters with the same x feature into a block. Then each block update only
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needs to call the inference oracle once for the instances related to the current x feature. However,
it cannot alleviate the large number of inference oracle calls unless the data is very sparse such that
every instance appears only in very few blocks.
Proximal Newton method has proven successful on problems of `1-regularized logistic regression
[13] and Sparse Invariance Covariance Estimation [5], where the Hessian-vector product can be
cheaply re-evaluated for each update of coordinate. However, the Hessian-vector product for CI
function like CRF requires the query of the inference oracle no matter how many coordinates are
updated at a time [17], which then makes the coordinate update on quadratic approximation as ex-
pensive as coordinate update in the original problem. Our proximal quasi-Newton method avoids
such problem by replacing Hessian with a low-rank matrix from BFGS update.

6 Numerical Experiments
We compare our approach, Prox-QN, with four other methods, Proximal Gradient (Prox-GD), OWL-
QN [23], SGD [21] and BCD [16]. For OWL-QN, we directly use the OWL-QN optimizer devel-
oped by Andrew et al.1, where we set the memory size as m = 10, which is the same as that in
Prox-QN. For SGD, we implement the algorithm proposed by Tsuruoka et al. [21], and use cumu-
lative `1 penalty with learning rate ηk = η0/(1 + k/N), where k is the SGD iteration and N is
the number of samples. For BCD, we follow Sokolovska et al. [16] but with three modifications.
First, we add a line search procedure in each block update since we found it is required for conver-
gence. Secondly, we apply shrinking strategy as discussed in Section 2.3. Thirdly, when the second
derivative for some coordinate is less than 10−10, we set it to be 10−10 because otherwise the lack
of `2-regularization in our problem setting will lead to a very large new iterate.

We evaluate the performance of Prox-QN method on two problems, sequence labeling and hierar-
chical classification. In particular, we plot the relative objective difference (f(wt)−f(w∗))/f(w∗)
and the number of non-zero parameters (on a log scale) against time in seconds. More experiment
results, for example, the testing accuracy and the performance for different λ’s, are in Appendix
E. All the experiments are executed on 2.8GHz Intel Xeon E5-2680 v2 Ivy Bridge processor with
1/4TB memory and Linux OS.

6.1 Sequence Labeling
In sequence labeling problems, each instance (x,y) = {(xt, yt)}t=1,2...,T is a sequence of T pairs
of observations and the corresponding labels. Here we consider the optical character recognition
(OCR) problem, which aims to recognize the handwriting words. The dataset 2 was preprocessed by
Taskar et al. [19] and was originally collected by Kassel [20], and contains 6877 words (instances).
We randomly divide the dataset into two part: training part with 6216 words and testing part with 661
words. The character label set Y consists of 26 English letters and the observations are characters
which are represented by images of 16 by 8 binary pixels as shown in Figure 1(a). We use degree
2 pixels as the raw features, which means all pixel pairs are considered. Therefore, the number of
raw features is J = 128 × 127/2 + 128 + 1, including a bias. For degree 2 features, xtj = 1
only when both pixels are 1 and otherwise xtj = 0, where xtj is the j-th raw feature of xi. For
the feature functions, we use unigram feature functions 1(yt = y, xtj = 1) and bigram feature
functions 1(yt = y, yt+1 = y′) with their associated weights, Θy,j and Λy,y′ , respectively. So
w = {Θ,Λ} for Θ ∈ R|Y |×J and Λ ∈ R|Y |×|Y | and the total number of parameters, d = |Y |2 +
|Y | × J = 215, 358. Using the above feature functions, the potential function can be specified as,
P̃w(y,x) = exp

{
〈Λ,
∑T

t=1(eyt
xT
t )〉+ 〈Θ,

∑T−1
t=1 (eyt

eTyt+1
)〉
}

,where 〈·, ·〉 is the sum of element-

wise product and ey ∈ R|Y | is an unit vector with 1 at y-th entry and 0 at other entries. The gradient
and the inference oracle are given in Appendix D.1.

In our experiment, λ is set as 100, which leads to a relative high testing accuracy and an optimal
solution with a relative small number of non-zero parameters (see Appendix E.2). The learning rate
η0 for SGD is tuned to be 2 × 10−4 for best performance. In BCD, the unigram parameters are
grouped into J blocks according to the x features while the bigram parameters are grouped into one
block. Our proximal quasi-Newton method can be seen to be much faster than the other methods.

1http://research.microsoft.com/en-us/downloads/b1eb1016-1738-4bd5-83a9-370c9d498a03/
2http://www.seas.upenn.edu/ taskar/ocr/
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(a) Graphical model of OCR
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Figure 1: Sequence Labeling Problem

6.2 Hierarchical Classification
In hierarchical classification problems, we have a label taxonomy, where the classes are grouped
into a tree as shown in Figure 2(a). Here y ∈ Y is one of the leaf nodes. If we have totally K
classes (number of nodes) and J raw features, then the number of parameters is d = K × J . Let
W ∈ RK×J denote the weights. The feature function corresponding to Wk,j is fk,j(y,x) = 1[k ∈
Path(y)]xj , where k ∈ Path(y) means class k is an ancestor of y or y itself. The potential function is

P̃W (y,x) = exp
{∑

k∈Path(y) w
T
k x
}

where wT
k is the weight vector of k-th class, i.e. the k-th row

of W . The gradient and the inference oracle are given in Appendix D.2.

The dataset comes from Task1 of the dry-run dataset of LSHTC13. It has 4,463 samples, each with
J=51,033 raw features. The hierarchical tree has 2,388 classes which includes 1,139 leaf labels.
Thus, the number of the parameters d =121,866,804. The feature values are scaled by svm-scale
program in the LIBSVM package. We set λ = 1 to achieve a relative high testing accuracy and
high sparsity of the optimal solution. The SGD initial learning rate is tuned to be η0 = 10 for best
performance. In BCD, parameters are grouped into J blocks according to the raw features.
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(c) Non-zero Parameters

Figure 2: Hierarchical Classification Problem

As both Figure 1(b),1(c) and Figure 2(b),2(c) show, Prox-QN achieves much faster convergence and
moreover obtains a sparse model in much less time.
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APPENDIX

A Convergence Proof

To exploit the CNSC-T property, we first re-build our problem and algorithm on the reduced space
Z = {z ∈ Rd̂|z = UTw}, where the strong-convexity property holds. Then we prove the asymp-
totic super-linear convergence on Z under the condition that the inner problem is solved exactly and
no shrinking strategy is not applied. Finally we prove the objective (1) is bounded by the difference
between current iterate and the optimal solution. In Section A.5, we provide the global convergence
proof when the shrinking strategy is applied.

A.1 Representing the problem in a reduced and compact space

Properties of CNSC-T condition
For `(w) satisfying CNSC-T condition, we have `(w) = `(projT (w)). Define g to be the gradient
of `(w) and H to be the Hessian of `(w). As both g and H are in the T space, we have g(w) =
UUTg(projT (w)) = g(projT (w)) and H(w) = UUTH(projT (w))UUT = H(projT (w)).

Objective formulation in the reduced space
Define ˆ̀(z) = `(Uz). Then if z = UTw, we have ˆ̀(z) = `(w), ĝ(z) = UTg(w) and Ĥ(z) =

UTH(w)U , where ĝ(z) and Ĥ(z) are the gradient and Hessian of ˆ̀(z) respectively. Now Ĥ is
positive definite with minimal eigenvalue m. The objective (1) can be re-formulated in the reduced
space by

min
z
f̂(z) = h(z) + ˆ̀(z), (8)

where
h(z) = min

UTw=z
λ‖w‖1

We now prove that h(z) is a convex function, i.e.,

ch(z1) + (1− c)h(z2) ≥ h(cz1 + (1− c)z2)

for any 0 ≤ c ≤ 1, z1 and z2.

Proof. Let
w1 = argmin

UTw=z1

λ‖w‖1 and w2 = argmin
UTw=z2

λ‖w‖1

Then,

ch(z1) + (1− c)h(z2) = λ(c‖w1‖1 + (1− c)‖w2‖1)

≥ λ(‖cw1 + (1− c)w2‖1)

≥ h(UT (cw1 + (1− c)w2))

= h(cz1 + (1− c)z2)

The optimal solution z∗ of (8) has the following relationship with the optimal solution w∗ of (1) ,

w∗ = argmin
UTw=z∗

λ‖w‖1 and z∗ = UTw∗ (9)

Lipschitz continuity in the reduced space
Throughout the paper, we assume the Hessian of `(w) has Lipschitz continuity with constant LH .
According to the Lipschitz continuity,

‖H(w2)(w1 −w2)− (g(w1)− g(w2))‖ ≤ LH

2
‖w1 −w2‖2

In the corresponding reduced space, the Lipschitz continuity also holds with the same constant .

‖Ĥ(z2)(z1 − z2)− (ĝ(z1)− ĝ(z2))‖ ≤ LH

2
‖z1 − z2‖2 (10)
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BFGS update formula in the reduced space
If B0 is in the T space, Bt is also in the T space. This can be shown by re-formulating the BFGS
update and mathematical induction,

Bt = UB̂t−1U
T −

UB̂t−1U
T st−1s

T
t−1UB̂t−1U

T

sTt−1UB̂t−1UT st−1

+
UUT yt−1y

T
t−1UU

T

yTt−1UU
T st−1

(11)

Thus

B̂t = B̂t−1 −
B̂t−1ŝt−1ŝ

T
t−1B̂t−1

ŝTt−1B̂t−1ŝt−1

+
ŷt−1ŷ

T
t−1

ŷTt−1ŝt−1
(12)

where ŝ = UT s, ŷ = UT y and UB̂tU
T = Bt. It can be proved that B̂t generated in (12) is positive

definite provided ŷT ŝ > 0 [18]. If we additionally assume m‖z‖2 ≤ zT B̂tz ≤ M‖z‖2 for any
z ∈ Rd̂, then Bt satisfies the CNSC-T condition.

Iterate in the reduced space
The potential new iterate w+ is

w+ = argmin
v

λ‖v‖1 +
1

2
(v −wt)

TBt(v −wt) + gT
t (v −wt) (13)

In the reduced space, the potential new iterate (13) can be represented by,

z+ = argmin
x

h(x) +
1

2
(x− zt)

T B̂t(x− zt) + ĝT
t (x− zt) (14)

z+ and w+ also satisfy Equation (9), i.e.

w+ = argmin
UTw=z+

‖w‖1 (15)

In this paper, we consider the convergence phase when zt is close enough to the optimum such that
the unit step size is always chosen, i.e. zt+1 = z+ [26].

A.2 Global linear Convergence

Lemma 1 (Global linear Convergence). For ∇ˆ̀(z) satisfying Lipschitz-continuity with a constant
Lg and Bt satisfying CNSC-T , the sequence {zt}∞t=1 produced by Prox-QN method converges at
least R-linearly.

Proof. This theorem follows Theorem 2 in [12], where the coordinate block Jk is chosen to be
the whole coordinate set. Assumption 2(a) in [12] is satisfied because of Theorem 4 C4 in [12]
by assuming ∇ˆ̀(z) is Lipschitz-continuous. Other conditions of Theorem 2 in [12] can be easily
justified.

A.3 Quadratic Convergence of Proximal Newton Method and Dennis-More Criterion

Lemma 2 (Quadratic Convergence of Prox-Newton (Theorem 3 in [1])). For `(w) satisfying CNSC-
T with Lipschitz-continuous second derivative H(w) = ∇2`(w), the sequence {wt} produced by
proximal Newton Method in the quadratic convergence phase has

‖zt+1 − z∗‖ ≤ LH

2m
‖zt − z∗‖2,

where z∗ = UTw∗, zt = UTwt, w∗ is the optimal solution and LH is the Lipschitz constant for
H(w).

Lemma 3. If B0 = UB̂0U
T satisfies CNSC-T condition, then B̂t generated by (12) satisfies the

Dennis-More criterion [24], namely,

lim
t→∞

‖(B̂t − Ĥ∗)(zt+1 − zt)‖
‖zt+1 − zt‖

= 0,

where Ĥ∗ = ∇2 ˆ̀(z∗) and z∗ is the optimal solution of (8).
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Proof. We want to show that this proof can follow the proof of Theorem 6.6 in [18]. We will verify
that the conditions of Theorem 6.6 in [18] are satisfied here. First, the Lipschitz continuity of Ĥ(z)
is implied by Lipschitz continuity of H(w) :

‖(Ĥ(z1)− Ĥ(z2))‖ = ‖UT (H(w1)−H(w2))U‖
≤ ‖H(w1)−H(w2)‖
= ‖H(Uz1)−H(Uz2)‖
≤ LH‖z1 − z2‖

where the last inequality is from the Lipschitz continuity of H(w). The second condition,∑∞
t=0 ‖zt − z∗‖ <∞, is implied by the global linear convergence(Lemma 1).

A.4 Asymptotic Superlinear Convergence

Proof of Theorem 1

Proof. If Bt satisfies CNSC-T condition, then B̂t satisfies m‖z‖2 ≤ zT B̂tz ≤ M‖z‖2 for any
z ∈ Rd̂. The Lipschitz-continuous H implies Lipschitz-continuity of Ĥ . Therefore by applying
the Prox-QN method in the reduced space, this theorem follows Theorem 3.7 in [26], Lemma 3 and
Lemma 2.

Proof of Theorem 2

Proof. We prove this theorem by showing |`(wt)− `(w∗)| ≤ L`‖zt− z∗‖ and ‖wt‖1−‖w∗‖1 ≤√
d‖zt − z∗‖. The first part is given by,

|`(wt)− `(w∗)| = |`(UUTwt)− `(UUTw∗)| ≤ L`‖UUT (wt −w∗)‖ = L`‖zt − z∗‖

where the inequality comes from the Lipschitz-continuity of `(w). In the super-linear convergence
phase, the unit step size is chosen, so each iterate satisfies (15). We have ‖wt‖1 ≤ ‖UUTwt +
(I − UUT )w∗‖1. Moreover, due to the Lipschitz-continuity of `1 norm, which is ‖w‖1 − ‖v‖1 ≤√
d‖w − v‖, we have,

‖UUTwt + (I − UUT )w∗‖1 ≤ ‖w∗‖1 +
√
d‖UUTwt − UUTw∗‖

≤ ‖w∗‖1 +
√
d‖zt − z∗‖

A.5 Global Convergence with Shrinking

In Theorem 1, we assume shrinking strategy is not employed and the inner problem is solved exactly.
In this subsection, we show that by only assuming the inner problem is solved exactly, Prox-QN
method with shrinking will still globally converge to the optimum under the CNSC-T condition.
We first prove that with sufficient small step size, the Armijo rule will be satisfied.

Lemma 4. If the step size,

α ≤ min {1, m
L1

(1− σ)}

then the Armijo rule is satisfied, i.e.,

f(w + αd) ≤ f(w) + ασ(λ‖w + d‖1 − λ‖w‖1 + gTd)

where L1 is the Lipschitz-continuity constant.
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Proof. Let w+ = w + αd,

f(w+)− f(w) = `(w+)− `(w) + λ(‖w+‖1 − ‖w‖1)

≤
∫ 1

0

∇`(w + sαd)(αd)ds+ αλ‖w + d‖1 + (1− α)λ‖w‖1 − λ‖w‖1

= α(∇`(w)Td + λ‖w + d‖1 − λ‖w‖1) + α

∫ 1

0

dT (∇`(w + sαd)−∇`(w))ds

≤ α(∇`(w)Td + λ‖w + d‖1 − λ‖w‖1) + α

∫ 1

0

‖UTd‖‖∇`(w + sαd)−∇`(w)‖ds

Because

‖∇`(w + sαd)−∇`(w)‖ = ‖∇`(UUTw + sαUUTd)−∇`(UUTw)‖ ≤ sL1‖UTd‖

we have

f(w+)− f(w) ≤ α
(

(∇`(w)Td + λ‖w + d‖1 − λ‖w‖1) +
L1α

2
‖UTd‖2

)
For α ≤ min {1, m

L1
(1− σ)},

L1α

2
‖UTd‖2 ≤ m

2
(1− σ)‖UTd‖2 ≤ 1− σ

2
dTBd

As d minimizes Eq. (2) in the main paper, we have 1
2d

TBd ≤ −(∇`(w)Td+λ‖w+d‖1−λ‖w‖1).
So we obtain the sufficient descent condition,

f(w+)− f(w) ≤ ασ
(
∇`(w)Td + λ‖w + d‖1 − λ‖w‖1

)

Proposition 1. Assume ∇2`(w) and ∇`(w) are Lipschitz continuous. Let {Bt}t=1,2,3... be the
matrices generated by BFGS update. Then if `(w) and Bt satisfy CNSC-T condition and the inner
problem is solved exactly, the proximal quasi-Newton method with shrinking has global convergence.

Proof. Our algorithm allows all the variables to re-enter the working set at the beginning of each
epoch. And before it terminates all the variables must be checked. Thus as many as epochs are
taken in the optimization procedure until the global stopping criterion is attained. Let’s denote
{tk}k=0,1,2,3... to be the iterations when an epochs begins. In these iterations, all the variables are
taken into consideration. As shown in Lemma 4, there exists some constant α0,

f(wtk+1)− f(wtk) ≤ α0σ
(
∇`(wtk)Tdtk + λ‖wtk + dtk‖1 − λ‖wtk‖1

)
And as in each epoch the function value is non-increasing across the iterations, i.e. for any k,
f(wtk+1

) ≤ f(wtk+1). Thus, we have

f(wtK+1)− f(wt0) ≤
K∑

k=0

f(wtk+1)− f(wtk) ≤ −α0σ

K∑
k=0

dT
tk
Btkdtk

As f(wtK+1) − f(wt0) > −∞, limk→∞ dT
tk
Btkdtk = 0. Thus, UTdtk → 0. That is to say,

limk→∞ dtk ∈ T ⊥. If dt ∈ T ⊥, the line search procedure will always pick unit step size. And
in the next iteration, dt+1 = 0. So when UTdtk → 0, we also have dtk → 0. Therefore, wtk
converges to the optimum according to Proposition 2.5 in [26].
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B Algorithm Details

Algorithm 2 Proximal Quasi-Newton Algorithm

Input: Observations {x(i)}i=1,2,...,N , labels {y(i)}i=1,2,...,N , termination criterion ε, scalar λ and
L-BFGS memory size m.

Output: w∗ converging to arg minwf(w)

1: Initialize γ = 1, w ← 0, g ← ∂`(w)/∂w, working set A ← {1, 2, ...d}, M̂ ← ∞, and S, Y ,
Q, Q̂← φ.

2: for n = 0, 1, ... do
3: Â ← A, A ← φ, M ← 0
4: for j in Â do . Shrink the working set
5: calculate ∂jf

∂jf(w) =

{
gj + sgn(wj)λ if wj 6= 0

sgn(gj) max{|gj | − λ, 0} if wj = 0
(16)

6: if wj 6= 0 or |gj | − λ+ M̂/N > 0 then
7: A ← A∪ j, M ← max{M, |∂jf |}
8: end if
9: end for

10: M̂ ←M
11: if Shrinking stopping criterion attained then . Check shrinking stopping criterion
12: if Stopping criterion attained and |Â| = d then . Check global stopping criterion
13: return w
14: else
15: g ← ∂`(w)/∂w, A ← {1, 2, ...d} and S, Y , Q, Q̂← φ
16: Update shrinking stopping criterion and then continue
17: end if
18: end if
19: d← 0, d̂← 0
20: Compute inner iter = min{max inner, b d

|A|c}
21: for p = 1, 2, ...inner iter do . Solve inner problem
22: for j in A do
23: Bjj = γ − qT

j q̂j , (Bd)j = γdj − qT
j d̂

24: a = (Bt)jj , b = (gt)j + (Btd)j and c = (wt)j + dj
25: Compute z according to z = −c+ S(c− b/a, λ/a)

26: dj ← dj + z, d̂← d̂ + zq̂j
27: end for
28: end for
29: for α = β0, β1, .... do . Conduct line search
30: if f(w + αd) ≤ f(w) + ασ(λ‖w + d‖1 − λ‖w‖1 + gTd) then
31: break
32: end if
33: end for
34: for j in A do
35: gnewj = ∂`(w)/∂wj , yj = gnewj − gj , sj = αdj , gj = gnewj
36: end for
37: Update S, Y and Q just on the rows corresponding to A.
38: Update γ, D, L, STS where the inner product between s and another vector is computed

just over A.
39: Update R and then update Q̂ just on the columns corresponding to A.
40: end for
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C Proof of Theorem 3

Proof. The Hessian of `(w) for CRF MLEs is

H =

N∑
i=1

(
E
[
φ(y,x(i))φ(y,x(i))T

]
− E

[
φ(y,x(i))

]
E
[
φ(y,x(i))

]T)
, (17)

where φ(y,x(i)) =
[
f1(y,x(i)), f2(y,x(i)), ..., fd(y,x(i))

]T
and E is the expectation over the

conditional probability Pw(y|x(i)). Now we re-formulate (17) to

H = ΦDΦ

Here D ∈ R(N |Y|)×(N |Y|) is a diagonal matrix with diagonal elements Dnn = Pw(yl|x(i)), where
n = (i − 1)|Y| + l and l = 1, 2, .., |Y|. Φ is a d × (N |Y|) matrix whose column n is defined as
Φn = φ(yl,x

(i))− E
[
φ(y,x(i)

]
for n = (i− 1)|Y|+ l.

The theorem holds because of the following four reasons.
a. N is constant with respect to w.
N is equivalent to

N = {a ∈ Rd|∀i,∃ some constant bi, 〈a, φ(y,x(i))〉 = bi for ∀y} (18)

Thus N is independent on w and so is T .
b. `(w) depends only on z = projT (w).
Let w = z + u. So u ∈ N .

Pw(y(i)|x(i)) =
exp

{
〈w, φ(y(i),x(i))〉

}∑
y exp

{
〈w, φ(y,x(i))〉

}
=

exp
{
〈z, φ(y(i),x(i))〉

}
exp

{
〈u, φ(y(i),x(i))〉

}∑
y exp

{
〈z, φ(y,x(i))〉

}
exp

{
〈u, φ(y,x(i))〉

}
=

exp
{
〈z, φ(y(i),x(i))〉

}∑
y exp

{
〈z, φ(y,x(i))〉

}
The last equality comes from the character of N , Equation (18).

c. The first property Eq. (4) holds.
Dnn → 0 iff ‖w‖1 → ∞ which is prohibited by `1 penalty. Thus there exists mp > 0 such that
Dnn ≥ mp for any n. Hence, the positive definiteness of H is determined by Φ.
So we have for any v ∈ T ,

mpλmin(ΦΦT )‖v‖2 ≤ mpv
T ΦΦTv ≤ vTHv ≤ vT ΦΦTv ≤ λmax(ΦΦT )‖v‖2

where λmin(ΦΦT ) is the minimum nonzero eigenvalue of ΦΦT and λmax(ΦΦT ) is the maximum
eigenvalue of ΦΦT .
d. The second property Eq. (5) holds.
This property directly follows the definition of N .

D Gradient evaluation in sequence labeling and hierarchical classification

The gradients for general CRF problems are given by

∂`(w)

∂wk
=

N∑
i=1

∑
y∈Y

Pw(y|x(i))fk(y,x(i))− fk(y(i),x(i))

 (19)
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D.1 Sequence labeling

The partial gradients of `(w) for sequence labeling problem are,

∂l(Θ,Λ)

∂Θy,j
=

N∑
i=1

T (i)∑
t=1

(
Pw(yt = y|x(i))− 1

[
y

(i)
t = y

])
x

(i)
tj (20)

∂l(Θ,Λ)

∂Λy,y′
=

N∑
i=1

T (i)−1∑
t=1

(
Pw(yt = y, yt+1 = y′|x(i))− 1

[
y

(i)
t = y, y

(i)
t+1 = y′

])
(21)

The forward-backward algorithm is a popular inference oracle for evaluating the marginal probabil-
ity in Equation (20) and (21). In our OCR model, the forward-backward algorithm is{

α1(y) = exp(ΘT
y x1)

αt+1(y) =
∑

y′ αt(y
′) exp(ΘT

y xt+1 + Λy′,y){
βT (y) = 1

βt(y
′) =

∑
y βt+1(y) exp(ΘT

y xt+1 + Λy′,y)

where ΘT
y is the y-th row of the matrix Θ. Then the marginal conditional probabilities are given by

Pw(yt = y′, yt+1 = y|x) =
1

Zw(x)
αt(y

′) exp(Θyxt+1 + Λy′,y)βt+1(y)

Pw(yt = y|x) =
1

Zw(x)
αt(y)βt(y),

where the normalization factor Zw(x) can be computed by
∑

y αT (y).

D.2 Hierarchical classification

The partial gradients of `(W ) for hierarchical classification problem are,

∂`(W )

∂Wk,j
=

N∑
i=1

∑
y∈Y

1 [k ∈ Path(y)]PW (y|x(i))− 1
[
k ∈ Path(y(i))

]x
(i)
j

They can be evaluated by the downward-upward algorithm. Let α(k) and β(k) be the downward
message and upward message respectively.

{
α(root) = wT

rootx

α(k) = α (parent(k)) + wT
k x{

β(k) = α(k)/
∑

y∈Y α(y) if k is a leaf node
β(k) =

∑
k′∈children(k) β(k′) if k is a non-leaf node

So we have
∂`(W )

∂Wk,j
=

N∑
i=1

(
β(i)(k)− 1

[
k ∈ Path(y(i))

])
x

(i)
j (22)

E More Experimental Results

E.1 Performance on different values of λ

λ affects the sparsity of the intermediate iterates, and further the speed of the algorithm. In particular,
when λ is larger, the intermediate iterates are sparser, and then the corresponding iterations, due to
the shrinking strategy, will be faster – and vice versa. The effect of λ on the performance is shown
in this section.
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E.1.1 Sequence Labeling
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Figure 3: Sequence Labeling Problem for λ = 500
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Figure 4: Sequence Labeling Problem for λ = 50
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E.1.2 Hierarchical Classification
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Figure 5: Hierarchical Classification Problem for λ = 2
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Figure 6: Hierarchical Classification Problem for λ = 0.5

E.2 Testing Accuracy

The testing accuracy for different λ’s on these two problems is in the following tables. The testing
accuracy across training time is shown in Figure 7.

λ 50 100 500
Testing Accuracy 0.834928 0.736643 0.407895
nnz of optimum 2542 1544 223

Table 1: Per-character testing accuracy for OCR dataset
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λ 0.5 1 2
Testing Accuracy 0.262648 0.249731 0.185684
nnz of optimum 28483 4301 1505

Table 2: Testing accuracy for LSHTC1 dataset
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(a) OCR dataset with λ = 100
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(b) LSHTC1 dataset with λ = 1

Figure 7: Testing accuracy v.s. training time

E.3 Relative objective difference v.s. the number of passes over dataset

Figure 8 shows the performance under the measure of number of passes (iterations) over dataset. We
do not include the plot for BCD method, because the pass over dataset for BCD actually depends on
the sparsity pattern of the dataset. Thus it is hard to fairly define the pass over dataset for BCD. In
this experiment, shrinking strategy is not applied.
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Figure 8: Relative objective difference v.s. the number of passes over dataset for OCR dataset with
λ = 100.

19


