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Abstract

Maximum-a-Posteriori (MAP) inference lies
at the heart of Graphical Models and Struc-
tured Prediction. Despite the intractability
of exact MAP inference, approximate meth-
ods based on LP relaxations have exhibited
superior performance across a wide range
of applications. Yet for problems involving
large output domains (i.e., the state space
for each variable is large), standard LP relax-
ations can easily give rise to a large number
of variables and constraints which are beyond
the limit of existing optimization algorithms.
In this paper, we introduce an effective
MAP inference method for problems with
large output domains. The method builds
upon alternating minimization of an Aug-
mented Lagrangian that exploits the spar-
sity of messages through greedy optimization
techniques. A key feature of our greedy ap-
proach is to introduce variables in an on-
demand manner with a pre-built data struc-
ture over local factors. This results in a
single-loop algorithm of sublinear cost per it-
eration and O(log(1/ε))-type iteration com-
plexity to achieve ε sub-optimality. In ad-
dition, we introduce a variant of GDMM
for binary MAP inference problems with a
large number of factors. Empirically, the pro-
posed algorithms demonstrate orders of mag-
nitude speedup over state-of-the-art MAP in-
ference techniques on MAP inference prob-
lems including Segmentation, Protein Fold-
ing, Graph Matching, and Multilabel predic-
tion with pairwise interaction.

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

1 Introduction

Graphical Models and Structured Prediction have be-
come prevalent in a wide range of applications includ-
ing Computer Vision, Natural Language Processing,
Social Networks, and Computational Biology. A com-
mon theme in these problems is that the elements in
output space are highly dependent. Such dependen-
cies are parametrized by factors in the language of
graphical models, and the prediction of structured out-
puts can be formulated as a problem of Maximum-a-
Posteriori (MAP) inference, which finds the mode of
the output distribution — that is, an output configu-
ration maximizing the summation of factor values.

Although MAP inference problems are NP-hard in
general, approximation methods based on various con-
vex relaxations have proven to be effective, e.g., Linear
Programming (LP) [1], Quadratic Programming (QP)
[2] and Semidefinite Programming (SDP) [3]. Among
them the LP-based relaxation exhibits the best trade-
off between accuracy and efficiency (particularly on
large-scale problems) and is arguably the most inves-
tigated approach in recent years [1, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14].

In the context of linear programming relaxations for
MAP inference, efficient algorithms usually take ad-
vantage of the underlying graph structures. However,
the number of variables in an LP relaxation still grows
linearly with both the number of factors and the size
of factor domains, where the latter can be quadratic
or even cubic in the number of states of each random
variable. Therefore, for problems with large output
domains, most existing linear programming techniques
become intractably slow. This paper addresses the fol-
lowing question: can we iterate over only a small por-
tion of potential labels for each random variable and
still ensure a desired convergence rate to an optimal
solution?

The contribution of this research is two-folded. First,
we show that a greedy version of the Augmented La-
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grangian Method which only passes a sparse set of ac-
tive messages can possess a O(log(1/ε))-type iteration
complexity. In particular, we propose two variants of
the greedy schemes—Frank-Wolfe (FW) and Block-
Greedy Coordinate Descent (BGCD)— for problems
with a large state space and problems with a large
number of factors, respectively. Second, we show by
maintaining a sparse set of messages, the generation
of active states or active factors can be performed in
time sublinear to the number of variables utilizing a
pre-built data structure. Therefore the proposed al-
gorithm is orders-of-magnitude faster than state-of-
the-art MAP inference algorithms on several problems
with large output domains, including Protein Folding,
Graph Matching, and Pairwise-Interacted Multilabel
Prediction.

2 Related Work

The optimization procedures of the existing LP relax-
ations for MAP inference share a similar underlying
mechanism — alternating between local optimizations
within each block of factors and message passing across
different blocks. A fundamental tradeoff is between the
cost of solving the local optimizations and the induced
global convergence rate. A representative work with
simple local optimizations is the Projected Subgradient
Dual Decomposition (PSDD) algorithm [5]. Each of its
local optimization depends on a single factor and op-
timizes a linear objective under a simplex constraint,
hence admits a close-form solution via a simple enu-
meration. Yet the number of iterations for PSDD to
find an ε-precise solution is O(1/ε2). A representative
work with faster convergence is the Alternating Direc-
tion Dual Decomposition (AD3) method [14] which has
O(1/ε) outer iteration complexity. However, its local
optimizations are based on quadratic programmings,
which usually do not admit closed-form solutions and
are solved via costly optimization sub-procedures. The
AD3 algorithm exploits an active-set method to reduce
the cost spent on the inner iterations, but the cost
for variable selection is linear to the factor domain
size. In contrast, our active-set method performs only
a closed-form update w.r.t. the active set, and utilizes
data structures to achieve a sublinear cost of variable
selection.

The barrier to fast convergence of the Dual Decom-
position techniques is their inherent non-smoothness
of dual objectives due to LP relaxations. This
non-smoothness also hinders global convergence for
algorithms that replace the Subgradient Descent
with the Block Coordinate Descent, such as Tree-
Reweighted Belief Propagation (TRWBP) [15], Tree-
Reweighted max-product message passing with Sequen-
tial update(TRW-S) [7], and Max-Product Linear Pro-

gramming (MPLP) [12]. In consequence, even though
the Block-Coordinate Descent (TRW-S, MPLP) meth-
ods exhibit faster convergence rate, they often suffer
from the issue of suboptimal fixed-points.

To achieve the fast convergence rate, a common strat-
egy is to add strongly convex terms to the primal
and/or dual objectives [9, 11]. However, such a
methodology incurs another layer of relaxation due
to these additional terms. Although these approaches
still achieve O(1/ε) iteration complexity (e.g., when
the Nersterov’s acceleration technique is used [16]),
their performance heavily relies on adjusting the
weights of these additional terms carefully. More-
over, these approaches typically use full-gradient up-
dates which obstruct exploiting the sparsity in the
messages (dual variables). One exception is the work
of [11] which utilizes the sparse optimizations on the
unsmoothed objective function. However, this method
only achieves an O(1/ε2) iteration complexity.

Note that the per-iteration cost of all existing LP re-
laxation methods grows linearly with the size of an
output domain. Apparently, this becomes intractable
when the size of state space increases. In this work,
we show how to exploit the sparsity of the messages
in large-output-domain problems to achieve a sublin-
ear cost per iteration and guarantee a fast convergence
rate. Note a similar strategy could be also exploited at
the training phase for some specific loss function such
as structured support vector machine [17, 18].

3 Algorithm

In this section, we describe the proposed GDMM al-
gorithm for MAP inference. We begin by describing a
variant of the augmented Lagrangian to a linear pro-
gramming relaxation for the MAP inference problem
(Sec. 3.1). We then show how to optimize it effi-
ciently using a greedy direction method of multiplier
(Sec. 3.2). We also propose another variant to effi-
ciently solve the problems with binary variables and a
large number of factors (Sec. 3.3). For simplicity, we
will focus our description on pairwise-interacted fac-
tors, but the technique can be easily generalized to
higher order factors.

3.1 Augmented Lagrangian for MAP
Inference

We study the standard MAP inference problem de-
scribed by a factor graph G = {V,F , E}, where V,F , E
are the sets of random variables, factors, and connect-
ing edges, respectively. We denote the neighboring
variables for each factor f ∈ F as ∂(f) = {i|(f, i) ∈ E}
and similarly the neighboring factors for each variable
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i ∈ V as ∂(i) = {f |(f, i) ∈ E}. Each variable i ∈ V
takes a value xi in a finite label set, i.e. xi ∈ Xi.
Variables and factors are associated with local score
functions θi,∀i ∈ V and θf , f ∈ F , respectively.

The goal of the Maximum-a-Posteriori (MAP) prob-
lem is to find an assignment {xi ∈ Xi|i ∈ V} (i.e. each
variable takes one value) that maximizes the sum of
local score functions:

max
x

∑
i∈V

θi(xi) +
∑
f∈F

θf (yf ) (1)

Here yf ∈ Yf :=
∏

i∈∂(f)

Xi collects assignments from

variables in ∂(f). Note that the factors associated with
only one variable can be absorbed by its neighboring
variable, so we assume all factors are of order at least
two.

We consider a standard LP relaxation for (1). Specif-
ically, we replace xi and yf with marginal vectors
xi ∈ ∆i = ∆|Xi| and yf ∈ ∆f = ∆|Yf |, where

∆M = {a ∈ RM |a � 0,
∑M
i=1 ai = 1} is a simplex

of dimension M . The marginal vectors are highly con-
strained with each other. The LP relaxations typically
relax these constraints as linear constraints. In this pa-
per, we consider standard linear constraints given by
∀(f, i) ∈ E ,Mifyf = xi, where

Mif (xi, yf ) =

{
1 if yf ∼ xi
0 otherwise

.

and yf ∼ xi means that xi is consistent with yf ’s
configuration.

Let θi and θf be vector representations of the local
score functions, we derive the LP relaxation in this
paper:

max
xi∈∆i
yf∈∆f

∑
i∈V

θTi xi +
∑
f∈F

θTf yf

s.t. ∀(f, i) ∈ E ,Mifyf = xi

(2)

Applying the Augmented Lagrangian method, the
objective function becomes (constraints remain the
same):

L({xi}, {yf}) =
∑
i∈V

(−θi)Txi +
∑
f∈F

(−θf )Tyf

+
∑

(f,i)∈E

(ρ
2
‖Mifyf − xi +

1

ρ
µtif‖22

)
.

(3)

For optimization, we alternate between optimizing the
primal variables {xi,yf} and the dual variables µif .
Note that the primal constraints xi ∈ ∆i and yf ∈ ∆f

are strictly enforced during optimization.

Algorithm 1 GDMM for Large Factor Domain

Initialization: ∀i ∈ V,xi ← 0,Ai ← ∅; ∀f ∈
F ,yf ← 0,Af ← ∅;∀(f, i) ∈ E ,µ0

if ← 0.
repeat

for s = 1, 2, · · · , S do
for γ = 1, 2, 4, 8, · · · , γmax do

1. ∀f ∈ F , update Af , yf (Af ) according to
(8) and (6) with Q = γQmax.
2. ∀i ∈ V, update Ai, xi(Ai) according to
(7) and (4)
3. Break if L(x′,y′)−L(x,y) ≤ σ〈∇yL,∆y〉

end for
end for
for ∀(f, i) ∈ E do

3. Compute µt+1
if based on (9)

end for
4. t← t+ 1

until primal/dual infeasibility < ε

3.2 Greedy Direction Method of Multiplier
for Factor of Large Domain

We proceed to describe the proposed greedy direction
method of multiplier (or GDMM) for optimizing (3)
(Please refer to Algorithm 1 for details). GDMM al-
ternates between updating the dual variables and se-
quentially optimizing the individual primal variables
xi and yf w.r.t. a judiciously selected active set of
states within the factor. However, the cost of such
optimization is still expensive when the label space is
large. This leads to the key component of this pa-
per, i.e., by maintaining active sets of coordinates for
each variable, one can pass only active messages to the
nearby factors. Once the messages become sparse, the
selection of active variables can be implemented effi-
ciently using pre-built data structures. These active
sets are initialized as empty sets and are gradually
augmented in an on-demand manner. Our approach
is motivated by the observations that the non-zero en-
tries in xi and yf are relatively sparse and the size of
these active sets are small throughout the optimiza-
tion. These observations could result in significant
speedup of the algorithm. Next, we present each step
of the GDMM method in detail: optimizing the primal
variables with respect to the active sets, updating the
active sets, and updating the dual variables.

Primal variable optimization. The primal vari-
ables are optimized by the Fully-corrective Frank-
Wolfe (FCFW) with approximate correction [19] which
alternates between optimizing {xi} and {yf} until a
certain precision is achieved. For each i ∈ V , we use
Ai and Āi to denote its active set and the complemen-
tary set, respectively. The subproblem of (3) w.r.t. Ai



Xiangru Huang †, Ian E.H. Yen ‡, Ruohan Zhang †

is given by

min
xi∈∆i

xi(Āi)=0

−θTi xi +
ρ

2

∑
f∈∂(i)

‖Mifyf − xi +
1

ρ
µtif‖22

which is equivalent to the simplex projection problem

min
xi∈∆i

xi(Āi)=0

∥∥∥∥∥∥xi −
 ∑
f∈∂(i)

(
Mifyf
|∂(i)| +

1

ρ
µtif ) +

θi
ρ|∂(i)|

∥∥∥∥∥∥
2

2

(4)

As in [20], (4) can be solved via a simplex projection
operation with time complexity O(|Ai| log(|Ai|). This
also implies that, when fixing µ, x can be written as
a simple function x(y).

Now we consider optimizing the variables associated
with each factor f ∈ F . Let Af and Āf be its active
set and the complementary set. The subproblem w.r.t.
Af is

min
yf∈∆f

yf (Āf )=0

Lf (x,y;µ)

:= −θTf yf +
ρ

2

∑
i∈∂(f)

‖Mifyf − xi +
1

ρ
µtif‖22

(5)

Instead of solving (5) exactly, we propose to minimize
a quadratic upper bound of the function (5). Let Q =
ρ‖M‖2 where ‖.‖ is the spectral norm. (5) becomes:

min
y+
f ∈∆f

y+
f (Āf )=0

Q

2
‖y+

f − yf‖22 +∇yf
LT (y+

f − yf ) (6)

where ∇yf
L =

∑
i∈∂(f)M

T
if (µtif −ρxi)−θf . Note the

quadratic upper bound (6) is tighter than that used
in the Proximal Gradient Descent scheme described in
[21] by a factor of

|Yf |
|Af | . It can be solved by a simplex

projection

min
y+
f ∈∆f

y+
f (Āf )=0

‖y+
f −(yf−

1

Q
(
∑
i∈∂(f)

MT
if (µtif−ρxi)−θf ))‖22

in time O(|Af | log(|Af |)). In practice, comput-
ing Q could be expensive, so we introduce a line-
search procedure over Q, starting from a lower bound
Qmax where Qmax := maxf∈F QAf

and QAf
=

ρ‖[Mif ]Af
‖2. In practice, we found the descent

amount often passes the line-search condition without
backtracking. Although we introduce a fully-corrective
loop (s = 1...S) in Algorithm 1 for ease of our analysis,
we found setting S = 1 suffices for fast convergence in
our experiments. Note by maintaining a small set of

non-zero variables, we limit the size of messages (non-
zero dual variables), yielding an efficient scheme for
finding new active variables as introduced next.

Updating the active sets. The active sets are
updated by finding a currently non-active coordinate
with largest gradient magnitude. For each i ∈ V, we
update the corresponding active set as

Ai ← Ai ∪ arg max
xi 6∈Ai

∇xiLi(x,y;µ) (7)

where ∇Lxi
(x,y;µ) = − ∑

f∈∂(i)

[ρ(Mifyf − xi) +

µtif ]xi − θi(xi). Similarly, for each f ∈ F , we update
the corresponding active set as

Af ← Af ∪ arg max
yf 6∈Af

∇yfLf (x,y;µ) (8)

where ∇yfLf (x,y;µ) =
∑

i∈∂(f)

[MT
if (ρ(Mifyf − xi) +

µtif )]yf − θf (yf ). Note that the new active coordi-
nates can be searched efficiently as long as the mes-
sages passed from nearby factors (Mifyf − xi) are
sparse. Specifically, as θi and θf are constant, we can
build sorted lists on θi, θf in the preprocessing phase.
When executing our algorithm, the selection (7) can
be done in time O(|Ai| +

∑
f∈∂(i) |Af |) since the size

of non-zero messages is bounded by
∑
f∈∂(i) |Af |.

The time complexity of the coordinate selection of
factor based on (8) is O(|Ai||Ai′ | + |Af |), where the
messages are denoted by δif = ρ(Mifyf − xi) + µtif .
For a pairwise-interaction factor f = (i, i′) ∈ F with
yf = (xi, xi′) and i, i′ ∈ V, we can find a coordinate
of largest gradient magnitude (8) by searching in four
divisions of the coordinates: (i) {(xi, xi′)|, δif (xi) =
δi′f (xi′) = 0}, (ii) {(xi, xi′)|δif (xi) = 0}, (iii)
{(xi, xi′)|δi′f (xi′) = 0} and (iv) {(xi, xi′)|δif (xi) 6=
0, δi′f (xi′) 6= 0}. In particular, (i) can be done in O(1)
via a sorted list on θf . (ii), (iii) can be done in time
O(|Ai||Ai′ | + |Af |) via sorted lists built on the sets
{θf (xi, xi′)|xi = k}, {θf (xi, xi′)|xi′ = k} respectively.
The complexity of (iv) is O(|Ai||Ai′ |).
To maintain a compact active set, after solving (4) and
(6), we remove all coordinates xi, yf with xi(xi) = 0,
yf (yf ) = 0 from Ai, Af , respectively.

Updating the dual After optimizing the primal vari-
ables, the dual variables are updated as

µt+1
if = µtif + η(Mifyf −xi), ∀i ∈ V, f ∈ F , (9)

where η is the dual step size. In the analysis section
we show for a sufficiently small η, Algorithm 1 globally
converges to the optimum.
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Algorithm 2 GDMM for Large Number of Factors

Initialization: ∀i ∈ V,xi ← 0; ∀f ∈ F ,yf ← 0;
∀(f, i) ∈ E ,µ0

if ← 0; t← 0. AV ← ∅; AF ← ∅.
repeat

1. Find i∗ satisfying (10), AV ← AV ∪ {i∗}.
2. AF ← AF ∪ {f ∈ F|∂(f) ⊆ AV}
3. ∀i ∈ AV , update xi(Xi) according to (4).
4. Find f∗ satisfying (11), AF ← AF ∪ {f∗}.
5. ∀f ∈ AF , update yf (Yf ) according to (6).
for ∀f ∈ AF , i ∈ ∂(f) do

6. Update µt+1
if base on (9)

end for
7. t← t+ 1

until primal/dual infeasibility < ε

3.3 GDMM for a Large Number of Factors

For applications such as alignment, segmentation and
multilabel prediction, the factor graphs comprise a
large number of factors with binary random vari-
ables. In this section, we introduce a variant of the
GDMM specifically for such problems. The procedure
is sketched in Algorithm 2.

The idea behind Algorithm 2 is to maintain two active
sets for variables and factors, denoted as AV ⊆ V and
AF ⊆ F , respectively. Then we ensure that at each
iteration a variable i∗ satisfying

i∗ = argmin
i

min
xi+d∈∆i

〈∇xi
Li(x,y;µ),d〉+

1

2
‖d‖2

(10)
and a factor f∗ satisfying

f∗ = argmin
f

min
yf+d∈∆f

〈∇yf
Lf (x,y;µ),d〉+

Qf
2
‖d‖2.

(11)
are in the active sets (i.e. i∗ ∈ AV and f∗ ∈ AF ).

Note that all variables are binary and all factors have
only 4 states, i.e. Yf = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Therefore one can always write xi(0) = 1 − xi(1)
and write yf (0, 0), yf (0, 1), yf (1, 0) as a function of
yf (1, 1), xj(1) and xi(1) by enforcing consistency con-
straints yf (1, 0) + yf (1, 1) = xi(1) and yf (0, 1) +
yf (1, 1) = xj(1) for a factor connecting to two vari-
ables i and j. Then one can verify the remaining con-
straints between factors and variables are:

xi(1)− yf (1, 1) = yf (1, 0) ≥ 0

xj(1)− yf (1, 1) = yf (0, 1) ≥ 0

1− xj(1)− xi(1) + yf (1, 1) = yf (0, 0) ≥ 0

(12)

One can encode (12) as the new set of constraints
Mifyf − xi = 0 by introducing slack variables for the
inequalities. Under this scheme, we show an efficient

method to include all variables and factors that satisfy
(10) and (11) in the active sets.

We achieve this by first pushing any inactive f into
AF if its neighboring variables i and j are both ac-
tive. Note this accounts for only a small fraction of
the factors if |AV | � |V|, and thus can be computed
efficiently. Then we consider any inactive factor f with
either i or j inactive. For this type of factor, we have
(12) satisfied and µif = µjf = 0, and the gradient of
each factor yf := yf (1, 1) is simply

∇yfLf (x,y;µ) = −θf (1, 1).

Therefore, the search of active factor (11) reduces to
finding the minimal θf (1, 1) among f /∈ AF , which can
be easily done via a sorted list of −θf (1, 1). For each
iteration, we add the first inactive f from the head
until we have −θf (1, 1) > 0 which can be done with
O(1) amortized cost. In our experiments, only a small
fraction of F will be added to AF . One can refer to
Appendix 9 for the statistics of active size |AF | in our
experiments.

4 Convergence Analysis

In this section, we show the GDMM algorithms for the
large factor domains (Algorithm 1) and a large num-
ber of factors (Algorithm 2) admit linear convergence.
To state the main result formally, we introduce the fol-
lowing notations. We use zt = (xt,yt) to encapsulate
the primal variables, and denote the feasible space as
M := {(x,y) ∈ | xi ∈ ∆i,∀i ∈ V;yf ∈ ∆f ,∀f ∈ F}.
Then the Augmented Lagrangian is expressed as

L(z,µ) = 〈−θ +MTµ, z〉+
ρ

2
‖Mz‖2,

where Mz = 0 collects all the constraints of the form

Mifyf − xi = 0, ∀(i, f) ∈ E .

To assess the convergence rate, denote a primal min-
imizer respect to a dual iterate µt at iteration t as

z̄t := arg min
z∈M

L(z,µt). (13)

The convergence rate is measured by the primal gap
∆t
p and the dual gap ∆t

d:

∆t
p := L(zt+1,µt)− L(z̄t,µt)

∆t
d := d∗ − L(z̄t,µt)

where d∗ := maxµminz∈M;L(z,µ) is the optimal
dual objective value. The following part states two
major results for the convergence of the GDMM in
the form of both Algorithm 1 and Algorithm 2.
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Theorem 1 (Convergence of Algorithm 1). Let Q =
ρ‖M‖2. For any constant dual step size η satisfying

0 < η ≤ ρ

4(1 + |F|Q/mM)
,

the iterates given by Algorithm 1 obey

∆t
p + ∆t

d ≤ ε, ∀t ≥ max

{
2(1 +

|F|Q
mM

),
τ

η

}
log(

1

ε
).

Here mM is the generalized geometric strong convex-
ity constant of function L(.,µ) on the domain M (de-
fined in Lemma 5), and τ is a constant characterized
in Lemma 4.

Theorem 2 (Convergence of Algorithm 2). Let
Qmax := maxf∈F Qf . For any constant dual step size
η satisfying

0 < η ≤ ρ

4(1 +Qmax/m1)
,

the iterates given by Algorithm 2 have

∆t
p + ∆t

d ≤ ε, ∀t ≥ max

{
2(1 +

Qmax
m1

),
τ

η

}
log(

1

ε
)

where m1 is a generalized strong convexity constant
of function L(.,µ) measured in `1-norm (defined in
Lemma 19).

Theorem 1 and 2 are based on the analysis frame-
work of [22] for the Augmented Lagrangian Method,
as well as the recent results on the linear convergence
of Frank-Wolfe variants [23] and Greedy Coordinate
Descent for non-strongly convex functions of the form
(13) [24, 25]. A proof outline can be find in Appendix
A followed by a detailed proof in Appendix B.

5 Experimental Evaluation

Here we evaluate the GDMM algorithm experimen-
tally. Section 5.1 discusses the experimental setup.
Section 5.2 analyzes the performance of the GDMM
and compare it with state-of-the-art MAP inference
techniques.

5.1 Experimental Setup

Benchmark datasets. We select five datasets that
involve large output domains. These datasets are se-
lected from two benchmarks: OPENGM2 and The
Probabilistic Inference Challenge 2011 (PASCAL)3. As

1The specific instances we used for each dataset are:
16 16 s.21.uai (Segmentation), fileforGal 400markers.uai
(ImageAlignment), EurLex (Multilabel), and 2BBN.uai
(Protein)

2http://hciweb2.iwr.uni-heidelberg.de/opengm/
3http://www.cs.huji.ac.il/project/PASCAL/

showNet.php

Dataset |Xi| |Yf | |V| |F|
Segmentation 21 441 226 842

ImageAlignment 83 6889 400 3334
MultiLabel 2 4 3884 7544670

Protein 404 163216 37 703
GraphMatching 1034 1069156 188 1864

Table 1: Data Statistics 1. |Xi| denotes the maximum
domain size of an output variable, |Yf | is the maximum
domain size of a factor, and |V|, |F| denote the number
of nodes, factors respectively.

shown in Table 1, they cover a diverse set of examples
with varying scales, network connectivities, and out-
put domain sizes. To help understand the performance
of the algorithms, we briefly describe each dataset:

• Protein. [26, 27] A Protein Folding dataset that
is included in both PASCAL and OpenGM. Its
factor graph has bigram factors between every
pair of variables.

• Graph Matching. A real world social network
matching dataset generated using Facebook net-
work data from SNAP4. We attempt to match
subgraphs to the original graph. In particular, we
construct the factor graph as follows: 1. one vari-
able for each node in a subgraph, with vertex set
of the original graph as its domain. We use in-
ner product of the features provided from SNAP
to generate the unigram factors. 2. For each in-
duced edge on the subgraph, we introduce a bi-
gram factor for the two variables and use inverse
of the shortest distance on the graph to generate
the bigram factor.

• Segmentation. A dataset from PASCAL which
has a grid-4 neighborhood structure.

• ImageAlignment. A dataset from PASCAL.

• Multilabel. A multilabel data set from Mulan 5.
The MAP inference problem is generated from a
trained model and an instance from the testset.

Compared Algorithms. The compared algorithms
include several top performing algorithms as well as
widely used MAP inference algorithms.

• TRWS [7]: a variant of the Tree-Reweighted max-
product message passing (TRW) [1] algorithm
that a) decomposes the graph into monotonic
chains instead of trees, and b) updates messages

4http://snap.stanford.edu
5http://mulan.sourceforge.net/datasets-mlc.html

http://hciweb2.iwr.uni-heidelberg.de/opengm/
http://www.cs.huji.ac.il/project/PASCAL/showNet.php
http://www.cs.huji.ac.il/project/PASCAL/showNet.php
http://snap.stanford.edu
http://mulan.sourceforge.net/datasets-mlc.html


Xiangru Huang †, Ian E.H. Yen ‡, Ruohan Zhang †

Dataset Segmentation ImageAlignment Multilabel Protein Graph Matching

Algorithm Time Primal Time Primal Time Primal Time Primal Time Primal
LBP 0.406s -252.39 4.136s -6907 5012.6s 899.06 86407s 11904 17696s 3733

TRWBP 1.6336s -252.39 17.2s -6907 25474s 899.06 75205s 11888 1598s 3733
TreeEP 11.514s -252.39 2666s -6916.95 2863.2s 899.06 2010.4s 11974 TLE TLE
HAK 6.75s -252.39 274.5s -6908 TLE TLE 10013s 10740 87886s 3717
GBP 0.22s -252.39 6.07s -6908 TLE TLE NE NE 3432s 3721

SoftBCFW 20.89s -356.57 5977s -19572 54.22s 889.32 1838s 9250 MLE MLE
LPsparse 0.57s -252.39 370s -6913.1 N/A N/A 32000s 12179 MLE MLE

SmoothMSD 11.19s -252.39 6462s -6907.6 53462s 893.66 13648s 11670 15312s 3733
MPLP 0.12s -252.39 9.85s -6907.6 45514s 846.64 124.3s 11771 212.5s 3730
PSDD 2.596s -319.38 531.4s -6907.6 1503s 899.06 20865s 10601.6 1192.9s 3733
AD3 0.15s -252.39 60.2s -6917.09 243.03s 899.06 48137s 12000.8 1659s 3733

TRW-S 0.0046s -252.39 0.65s -6907 21.89s 899.06 39.67s 12067 47.3s 3732
GDMM 0.26s -252.39 18.09s -6907.6 16.02s 899.06 661s 12263 25.9s 3733

Table 2: Primal : best decoded (integer solution) primal objective; Time: time taken to reach the decoded
primal objective. The shortest time taken to reach the best MAP objective among all methods are marked with
boldface. For all experiments we set memory limit = 100G and time limit = 2 day. Experiments violating these
limits are marked MLE: Memory Limit Exceeded, or TLE: Time Limit Exceeded; NE means the solver throws
error message “quantity not normalizable”.

according to a global order on each chain. We
used implementation from the OPENGM Library
[28, 29], which wraps the original TRWS code.

• AD3: The Alternating Directions Dual Decom-
position algorithm with public implementation 6

provided by the authors of [14].

• PSDD: The Projected Subgradient Dual Decom-
position algorithm by [5]. Its implementation is
contained in the AD3 code.

• MPLP: The Max-Product Linear Programming
algorithm [8, 12, 13] with public implementation
7. For a fair comparison, we disabled its tighten-
ing process to make sure that GDMM and MPLP
optimize the same objective function.

• According to the comparison figures in [11], we
add two leading methods in terms of performance.

– SmoothMSD: as a variant of the coordinate
minimization method on smoothed dual (the
CD soft in [11]), we implemented the smooth
Max-Sum Diffusion (MSD) algorithm in [30].

– SoftBCFW: the Block-Coordinate Frank-
Wolfe for soft-constrained primal, described
as Algorithm 1 by [11].

For each experiment, we choose γ ∈
{10−2, 10−3, 10−4, 10−5, 10−6} for SmoothMSD
and λ ∈ {1, 10−1, 10−2, 10−3, 10−4} for Soft-
BCFW. Among parameters that give the best
decoded primal objective, we select the fastest.

6http://www.cs.cmu.edu/~ark/AD3/
7http://cs.nyu.edu/~dsontag/code/README_v2.html

• LPsparse: A recently proposed general-purpose
LP solver for problems with sparse structures [31].

• Algorithm implemented in libDAI [32], includ-
ing the Loopy Belief Propagation (LBP) [33],
the Tree-Reweighted Belief Propagation (TR-
WBP) [15], the Tree Expectation Propagation
(TreeEP)[34], the Double-loop GBP (HAK) [35],
and Generalized Belief Propagation (GBP) [36].

In all experiments, we pick ρ ∈ {1, 0.1, 0.01, 0.001} and
η ∈ {0.1, 1} for GDMM. Generally speaking, the per-
formance of MAP inference algorithms is largely deter-
mined by the structure and domain size of the factor
graph. Among these five datasets, Segmentation and
Image Alignment represent factor graphs with small
domain sizes and a small number of factors; Multil-
abel represents graphs with a large number of factors;
Protein and Graph Matching represent graphs with a
large number of factors and large domain sizes.

5.2 Benchmark Evaluation

In this section, we present our benchmark evaluation
results. All participating methods are compared in
terms of running time and decoded (integer solution)
primal objective. Table 2 presents the statistics, and
Figure 1 illustrates the convergence behavior.

Overall, GDMM is the top-performing algorithm. It
returns the best solutions among all five datasets. In
terms of running time, it is also competent with the
top algorithms on each dataset.

On the grid-4 structured factor graphs such as Segmen-
tation, TRWS and MPLP are generally fast and accu-
rate. But they are also less accurate on several exam-

http://www.cs.cmu.edu/~ark/AD3/
http://cs.nyu.edu/~dsontag/code/README_v2.html
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Figure 1: Convergence results for data sets with (a)(b): small #state and small #factor; (c): large #factor;
(d),(e): large #states. In this paper we only consider decoded (integer solution) primal objective. Relative
Primal Gap (decoded) is defined as P∗−P

|P∗| where P is the current primal objective and P ∗ is the best primal

objective found among all algorithms.

ples. AD3 could provide more accurate solutions, but
its active-set method introduces a variable selection
procedure that has cost linear to the factor domain
size, which results in the slow convergence on Protein
and Graph Matching. In contrast, GDMM takes ad-
vantage of the active sets of size sublinear to the factor
domains (see Appendix C for details), which leads to
orders of magnitude speedup. Algorithms such as Soft-
BCFW and SmoothMSD minimize over a smoothed
objective function. However SoftBCFW can not ex-
plicityly enforce consistency constraints and hence of-
ten stuck at solutions with poor quality. Meanwhile
SmoothMSD can provide solutions with good quality
at the cost of slow convergence.

Another key feature of the GDMM is its small mem-
ory overhead. Most algorithms require memory that
is linear in the sum of factor domain sizes, due to
the dense messages and primal variables. For ex-
ample, for the Graph Matching dataset, the memory
consumptions for the compared algorithms are AD3

/ PSDD: 69G, MPLP: 45G, TRWS:13G, LPsparse
/ SoftBCFW:>100G. GDMM addresses this issue by
maintaining an active set and sparse messages, results
in a memory footprint of only 260M.

6 Conclusions and Future Work

In this paper, we introduce GDMM, an efficient al-
gorithm for MAP inference of large output domain.
GDMM combines the power of greedy method (FW,
GCD) with ALM to achieve a cost sublinear to the
domain size. We show that despite the usage of ac-
tive sets, the algorithm still admits a linear-type con-
vergence rate, and experimental results on benchmark
datasets reveal superiority of the algorithm on large-
scale problems. As a future work, we plan to develop
algorithm that integrates our approach with the fast
convergence of TRWS.
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[30] Tomáš Werner. Revisiting the decomposition ap-
proach to inference in exponential families and
graphical models. Center for Machine Per-
ception, Czech Technical University Prague, Re-
search Report, CTU-CMP-2009-06, ftp://cmp. felk.
cvut. cz/pub/cmp/articles/werner/Werner-TR-2009-
06. pdf, 2009.

[31] Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh,
Pradeep K Ravikumar, and Inderjit S Dhillon. Sparse
linear programming via primal and dual augmented
coordinate descent. In Advances in Neural Informa-
tion Processing Systems, pages 2368–2376, 2015.

[32] Joris M. Mooij. libDAI: A free and open source C++
library for discrete approximate inference in graphi-
cal models. Journal of Machine Learning Research,
11:2169–2173, August 2010.

[33] Frank R Kschischang, Brendan J Frey, and H-A
Loeliger. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on information theory,
47(2):498–519, 2001.

[34] Yuan Qi and TP Minka. Tree-structured approxima-
tions by expectation propagation. Advances in Neural
Information Processing Systems (NIPS), 16:193, 2004.

[35] Tom Heskes, Kees Albers, and Bert Kappen. Ap-
proximate inference and constrained optimization. In
Proceedings of the Nineteenth conference on Uncer-
tainty in Artificial Intelligence, pages 313–320. Mor-
gan Kaufmann Publishers Inc., 2002.

[36] Jonathan S Yedidia, William T Freeman, and Yair
Weiss. Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE
Transactions on Information Theory, 51(7):2282–
2312, 2005.

[37] A.J. Hoffman. On approximate solutions of systems of
linear inequalities. Journal of Research of the National
Bureau of Standards, 1952.



Xiangru Huang †, Ian E.H. Yen ‡, Ruohan Zhang †

7 Proof Roadmap

The key in proving Theorem 1 and 2 is to establish
bounds on the primal-dual progress ∆t

p+∆t
d−∆t−1

p −
∆t−1
d . As intermediate steps, the two lemmas below

bound the dual-progress ∆t
d − ∆t−1

d and the primal-
progress ∆t

p−∆t−1
p with respect to the primal variables

{zt} and the optimal primal variables {z̄t} at each
iteration.

Lemma 1 (Dual Progress). The dual progress is upper
bounded as

∆t
d −∆t−1

d ≤ −η(Mzt)T (M z̄t). (14)

Lemma 2 (Primal Progress). The primal progress is
upper bounded as

∆t
p −∆t−1

p ≤ L(zt+1,µt)− L(zt,µt)

+ η‖Mzt‖2 − η〈Mzt,M z̄t〉

By combining results of Lemma 1 and 2, we obtain an
intermediate upper bound on the primal-dual progress:

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ η‖Mzt −M z̄t‖2 − η‖M z̄t‖2

+ L(zt+1,µt)− L(zt,µt)

(15)

The following four lemmas provide upper bounds on
the three sub-terms in (15), i.e., ‖Mzt − M z̄t‖2,
−η‖M z̄t‖2, and L(zt+1,µt) − L(zt,µt), where the
bounds on the last term are algorithm-dependent and
therefore are tackled by Lemma 5 and Lemma 19 for
Algorithm 1 and Algorithm 2 respectively.

Lemma 3.

‖Mzt −M z̄t‖2 ≤ 2

ρ
(L(zt,µt)− L(z̄t,µt)). (16)

Lemma 4 (Hong and Luo 2012 ). There is a constant
τ > 0 such that

∆d(µ) ≤ τ‖M z̄(µ)‖2. (17)

for any µ in the dual domain and any primal mini-
mizer z̄(µ) satisfying (13).

Lemma 5. The descent amount of Augmented La-
grangian function produced by one pass of FCFW (in
Algorithm 1) has

L(zt+1,µt)− L(zt,µt)

≤ − mM
2|F|Q (L(zt,µt)− L(z̄t,µt))

(18)

where Q = ρ‖M‖2.

Lemma 6. The descent amount of Augmented La-
grangian function produced by iterations of Algorithm
2 has

L(zt+1,µt)− L(zt,µt)

≤ −m1

Qmax
(L(zt,µt)− L(z̄t,µt))

(19)

where Qmax = maxf∈F Qf and

m1 :=
1

max{16θ1∆L0, 2θ1(1 + 4L2
g)/ρ, 6}

(20)

is the generalized strong convexity constant for func-
tion L(.,µ). Here ∆L0 is a bound on L(z0,µt) −
L(z̄0,µt), Lg is local Lipschitz-continuous constant of
the function g(x) := ‖x‖2, and θ1 is the Hoffman con-
stant depending on the geometry of optimal solution
set.

Now we are ready to prove Theorem 1 and 2.

Proof of Theorem 1. Let κ = mM/(|F|Q). By
lemma 5 and (15), we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ −κ
1 + κ

(
L(zt,µt)− L(z̄t,µt)

)
+

2η

ρ
(L(zt,µt)− L(z̄t,µt))− η‖M z̄t‖2.

(21)

Then by choosing η < κρ
2(1+κ) , we have guaranteed de-

scent on ∆p+∆d for each GDMM iteration. By choos-
ing η ≤ κρ

4(1+κ) , we have

(∆t
d + ∆t

p)− (∆t−1
d + ∆t−1

p )

≤ −κ
2(1 + κ)

(
L(zt,µt)− L(z̄t,µt)

)
− η‖M z̄t‖2

≤ −κ
2(1 + κ)

∆t
d −

η

τ
∆t
d

≤−min

(
κ

2(1 + κ)
,
η

τ

)(
∆t
p + ∆t

d

)
where the second inequality is from Lemma 4. We thus
obtain a recursion of the form

∆t
d + ∆t

p ≤
1

1 + min( κ
2(1+κ) ,

η
τ )

(
∆t−1
d + ∆t−1

p

)
,

which then leads to the conclusion.

The proof of Theorem 2 is the same as above except
that the definition of κ is changed to m1/Qmax and
Lemma 5 is replaced by Lemma 19.
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8 Proof of Lemmas

Proof of Lemma 1.

∆t
d −∆t−1

d = L(z̄t−1,µt−1)− L(z̄t,µt)

≤ L(z̄t,µt−1)− L(z̄t,µt)

= 〈µt−1 − µt,M z̄t〉
= −η〈Mzt,M z̄t〉

where the first inequality follows from the optimality of
z̄t−1 for the function L(z,µt−1) defined by µt−1, and
the last equality follows from the dual update (9).

Proof of Lemma 2.

∆t
p −∆t−1

p

=L(zt+1,µt)− L(zt,µt−1)− (d(µt)− d(µt−1))

≤L(zt+1,µt)− L(zt,µt) + L(zt,µt)− L(zt,µt−1)

+ (d(µt−1)− d(µt))

≤L(zt+1,µt)− L(zt,µt) + η‖Mzt‖2 − η〈Mzt,M z̄t〉
where the last inequality uses Lemma 1 on d(µt−1)−
d(µt) = ∆t

d −∆t−1
d .

Proof of Lemma 3. Introduce

L̃(z,µ) = h(z) +G(Mz),

where
G(Mz) =

ρ

2
‖Mz‖2,

and
h(z) = 〈−θ, z〉+ 〈µ,Mz〉+ Iz∈M.

Here

Iz∈M =

{
0 z ∈M,
∞ otherwise.

As feasibility is strictly enforced during primal up-
dates, we have

L̃(z̄t,µt) = L(z̄t,µt), L̃(zt,µt) = L(zt,µt). (22)

As z̄t is a critical point of L(z,µt), and by definition,
L(z,µt) ≤ L̃(z,µt), we obtain,

0 ∈ ∂zL̃(z̄t,µt) = ∂h(z̄t) +MT∇G(M z̄t).

Note that h(·) is convex, it follows that

h(zt)− h(z̄t) ≥ 〈v, zt − z̄t〉, ∀v ∈ ∂h(z̄t). (23)

Moreover,

G(M(zt))−G(M(z̄t)) (24)

=
ρ

2
(‖Mzt‖2 − ‖M z̄t‖2)

=
ρ

2
(zt − z̄t)TMTM(zt + z̄t)

= ρ(zt − z̄t)TMTM z̄t +
ρ

2
(zt − z̄t)TMTM(zt − z̄t)

= 〈MT∇G(M z̄t), zt − z̄t〉+
ρ

2
‖Mzt −M z̄t‖2.

(25)

Combing (22), (23), and (25), we arrive at

L(zt,µt)− L(z̄t,µt) ≥ ρ

2
‖M(zt)−M(z̄t)‖2.

Proof of Lemma 4. This is a lemma adapted from
[22]. Since our primal objective (2) is a linear function
with each block of primal variables xi (or yf ) con-
strained in a simplex domain, it satisfies the assump-
tions A(a)—A(e) and A(g) in [22]. Then Lemma 3.1
of [22] guarantees that, as long as ‖∇d(µ)‖ is always
bounded, there is a constant τ > 0 s.t.

∆d(µ) ≤ τ‖∇d(µ)‖2 = ‖M z̄(µ)‖2

for all µ in the dual domain. Note our problem satisfies
the condition of bounded gradient magnitude since

‖∇d(µ)‖ = ‖M z̄(µ)‖ ≤ ‖M z̄(µ)‖1
≤ ‖M‖1‖z̄(µ)‖1 ≤ (max

f
|Yf |)(|F|+ |V|)

where the last inequality is because each block of vari-
ables in z̄(µ) lie in a simplex domain.

Proof of Lemma 5. Recall that the Augmented La-
grangian L(z,µ) is of the form

L(z,µ) = 〈−θ +MTµ, z〉+G(Mz) ,∀i ∈ V (26)

where M is the matrix that encodes all constraints of
the form

Mifzf − zi =
[
Mif −Ii

] [ zf
zi

]
= 0.

and function G(w) = ρ
2‖w‖2 is strongly convex with

parameter ρ. Let

H(z) := L(z,µ). (27)

Since we are minimizing the function subject to a con-
vex, polyhedral domain M, by Theorem 10 of [23],
we have the generalized geometrical strong convexity
constant mM of the form

mM := m(PWidth(M))2 (28)

where PWidth(M) > 0 is the pyramidal width of the
simplex domain M and m is the generalized strong
convexity constant of function (26) (defined by Lemma
9 of [23]). By definition of the geometric strong con-
vexity constant, we have

H(z)−H∗ ≤ g2
FW

2mM
(29)

from (23) in [23], where gFW := 〈∇H(z),vFW − vA〉.
vFW is the greedy Frank-Wolfe (FW) direction

vFW := arg min
v∈M
〈∇H(z),v〉 (30)
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and vA is the away direction

vA := arg max
v∈M
〈∇H̃(z),v〉 (31)

where

∇kH̃(z) =

{
∇kH(z), zk 6= 0
−∞, o.w.

Then let m = |F| be the number of factors. For each
inner iteration s of the Fully-Corrective FW, by min-
imizing subproblem (5) w.r.t. an active set that con-
tains the FW direction and also the away direction (by
the definition (31)), we have, for any ∀γ ∈ [0, 1],

H(zt+1)−H(zt) ≤ γgtFW +mQγ2. (32)

Suppose the minimizer of (32) γ∗ = − gtFW

2mQ has γ∗ < 1,
we have

H(zt+1)−H(zt) ≤ − g
t2
FW

4mQ
(33)

Otherwise, let γ∗ = 1, we have

H(zt+1)−H(zt)

≤ gtFW +mQ ≤ gtFW
2

< − g
t2
FW

2mQ
≤ − g

t2
FW

4mQ
,

where the second inequality holds since − gtFW

2Qm ≥ 1.

Combining with the error bound (29), we have

H(zt+1)−H(zt) ≤ −mM(H(zt)−H∗)
2mQ

. (34)

Proof of Lemma 19.

For problem of the form (13), the optimal solution
is profiled by the polyhedral set S := {z | Mz =
t∗, ∆Tz = s∗, z ∈ M} for some t∗, s∗. Denoting
z̄ := ΠS(z), we can bound the distance of any feasible
point z to its projection ΠS(z) to set S by

‖z̄ − z‖22,1 = (
∑
f∈F
‖z̄f − zf‖2)2

≤ θ1

(
‖Mz − t∗‖2 + ‖∆Tz − s∗‖2

) (35)

where θ1 is a constant depending on the set S, using
the Hoffman’s inequality [37].

Then for each iteration t of the Algorithm 2, consider
the descent amount produced by the update w.r.t. the
selected factor satisfying (11). We have

H(zt+1)−H(zt)

≤ min
zt
f∗+df∗∈∆f∗

〈∇zf∗H,df∗〉+
Qmax

2
‖df∗‖2

= min
zt+d∈M

∑
f∈F
〈∇zf

H,df 〉+
Qmax

2

∑
f∈F
‖df‖

2

(36)

where the second equality is from the definition (11)
of f∗.

Then we have

H(zt+1)]−H(zt)

≤ min
zt+d∈M

∑
f∈F
〈∇zf

H,df 〉+
Qmax

2

(∑
f∈F
‖df‖

)2


≤ min
zt+d∈M

H(zt + d)−H(zt) +
Qmax

2

(∑
f∈F
‖df‖

)2

≤ min
β∈[0,1]

H(zt + β(z̄t − zt))−H(zt)

+
Qmaxβ

2

2

(∑
f∈F
‖z̄tf − ztf‖

)2

≤ min
β∈[0,1]

β(H(z̄t)−H(zt)) +
Qmaxβ

2

2
‖z̄t − zt‖22,1

(37)
where z̄t = ΠS(zt) is the projection of zt to the op-
timal solution set S. The second and last inequality
is due to convexity, and the third inequality is due to
a confinement of optimization domain. Then let Lg
be the local Lipschitz-continuous constant of function
G(Mz) = ρ

2‖Mz‖2 in the bounded domain of Mz.
We discuss two cases in the following.

Case 1: 4L2
g‖Mzt − t∗‖2 < (∆Tzt − s∗)2.

In this case, we have

‖zt − z̄t‖22,1 ≤ θ1(‖Mzt − t∗‖2 + (∆Tzs − s∗)2)

≤ θ1(
1

L2
g

+ 1)(∆Tzt − s∗)2

≤ 2θ1(∆Tzt − s∗)2,
(38)

and

|∆Tzt − s∗| ≥ 2Lg‖Mzt − t∗‖ ≥ 2|G(Mzt)−G(t∗)|

by the definition of Lipschitz constant Lg. Note

∆Tzt − s∗ is non-negative since otherwise, H(zt) −
H∗ = G(Mzt) − G(t∗) + (∆Tzt − s∗) ≤ |G(Mzt) −
G(t∗)| − |∆Tzt − s∗| ≤ − 1

2 |∆
Tzt − s∗| < 0, which

leads to contradiction. Therefore, we have

H(zt)−H∗

= G(Mzt)−G(t∗) + (∆Tzt − s∗)
≥ −|G(Mzt)−G(t∗)|+ (∆Tzt − s∗)

≥ 1

2
(∆Tzt − s∗).

(39)
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Combining (37), (38) and (39), we have

H(zt+1)−H(zt)

≤ min
β∈[0,1]

−β
2

(∆Tzt − s∗) +
2Qmaxθ1β

2

2
(∆Tzt − s∗)2

=

{
−1/(16Qmaxθ1) , 1/(4ρθ1(∆Tzt − s∗)) ≤ 1

− 1
4 (∆Tαs − s∗) , o.w.

Furthermore, we have

− 1

16Qmaxθ1
≤ − 1

16Qmaxθ1(H0 −H∗)
(
H(zt)−H∗

)
where H0 = H(z0), and

−1

4
(∆Tzt − s∗) ≤ −1

6
(H(zt)−H∗)

since H(zt)−H∗ ≤ |G(Mzt)−G(t∗)|+ ∆Tzt − s∗ ≤
3
2 (∆Tzt − s∗). In summary, for Case 1 we obtain

H(zt+1)]−H∗ ≤ (1− m0

Qmax
)
(
H(zt)−H∗

)
(40)

where

m0 =
1

max {16θ1(H0 −H∗) , 6} . (41)

Case 2: 4L2
g‖Mzt − t∗‖2 ≥ (∆Tzt − s∗)2.

In this case, we have

‖z̄t − zt‖2 ≤ θ1

(
1 + 4L2

g

)
‖Mzt − t∗‖2, (42)

and by strong convexity of G(.),

H(zt)−H∗ ≥
∆T (zt − z∗) +∇G(t∗)TM(z̄t − zt) +

ρ

2
‖Mzt − t∗‖2.

Now let h(α) be a function that takes value 0 when
z is feasible and takes value ∞ otherwise. Adding
inequality 0 = h(zt) − h(z̄t) ≥ 〈σ∗, zt − z̄t〉 for some
σ∗ ∈ ∂h(z̄t) to the above gives

H(zt)−H∗ ≥ ρ

2
‖Mzt − t∗‖2 (43)

since σ∗+∆+∇G(t∗)TM = σ∗+∇H(zt) = 0. Com-
bining (37), (42), and (43), we obtain

H(zt+1)−H(zt)

≤ min
β∈[0,1]

−β(H(zt)−H∗) +
θ1(1 + 4L2

g)Qmaxβ
2

2ρ

(
H(zt)−H∗

)
= − ρ

2θ1(1 + 4L2
g)Qmax

(
H(zt)−H∗

)
(44)

Combining results of Case 1 (40) and Case 2 (44), we
have

H(zt+1)−H(zt) ≤ − m1

Qmax
(H(zt)−H∗), (45)

where

m1 =
1

max{16θ1∆L0, 2θ1(1 + 4L2
g)/ρ, 6}

This leads to the conclusion.

9 Active set size statistics for all
experiments

Dataset |F| Et|AtF |
MultiLabel 7544670 6128.2

Dataset |Yf | Et,f |Atf |
Segmentation 441 4.9

ImageAlignment 6889 2.4
Protein 163216 12.7

GraphMatching 1069156 1.66

Table 3: Run time statistics for GDMM active set. For
multilabel dataset, we use Algorithm 2, thus |F| and
Et|AtF | are compared, where Et|AtF | is the expected
size of AF over all iterations. For other datasets, we
use Algorithm 1, thus |Yf | and Et,f |Atf | are compared,
the latter is the expected size of Af over all iterations
and bigram factors.
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