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Abstract

I In this work, we consider Empirical Risk Minimization (ERM) when data
size is larger than the memory capacity of machines.

IState-of-the-art batch algorithms become slow due to I/O.
IOnline algorithms converge slowly (especially for non-smooth regularizer),

while existing distributed approach requires data to fit into memory of
several machines.

IWe propose a Block Minimization framework that generalizes (Yu. et al.
2010) for SVM to that for any convex ERM, which can be integrated with
any convex optimization solver to achieve global fast convergence in
limited-memory condition.

Regularized Empirical Risk Minimization (ERM)

Given a data set D = {(Φn,yn)}N
n=1, the ERM estimates model through

min
w∈Rd

F (w) = R(w) +
N∑

n=1

Ln(Φnw) (1)

Iw ∈ Rd are parameters to be estimated, Φn is p × d feature matrix of n-th
sample, and Ln(.), R(.) are loss function and regularizer.

Examples

IMulticlass Classification: (p = |Y|, where Y:label set).
Logistic loss: Ln(ξ) = log(

∑
k∈Y exp(ξk))− ξyn.

Hinge loss: Ln(ξ) = maxk∈Y(1− δk ,yn + ξk − ξyn).

IMultitask Regression: (p = K , where K = #tasks)
Square loss: Ln(ξ) = 1

2‖ξ − yn‖2.
IOthers: Ranking, Matrix Completion, Structured Learning, Clustering etc..

IRegularizers: L2 norm λ‖w‖2, L1 norm λ‖w‖1, Group norm λ‖W‖G,
Nuclear norm λ‖W‖∗, and etc.

Strong Convexity & Smoothness

IA function f (x) is strongly convex iff it is lower bounded by a simple
quadratic function

f (y) ≥ f (x) +∇f (x)T (y − x) +
m
2
‖x − y‖2 (2)

for some constant m > 0 and ∀x ,y ∈ dom(f ).

IA function f (x) is smooth iff it is upper bounded by a simple quadratic
function

f (y) ≤ f (x) +∇f (x)T (y − x) +
M
2
‖x − y‖2 (3)

for some constant 0 ≤ M <∞ and ∀x ,y ∈ dom(f ).

ITheorem 1: A convex function f (.) is smooth with parameter M if and only if
its convex conjugate f ∗(.) is strongly convex with parameter m = 1/M.

Dual Form

The dual of ERM problem (1) is of the form

min
αn∈Rp

G(α) = R∗(−
N∑

n=1

ΦT
nαn) +

N∑
n=1

L∗n(αn). (4)

IBlock Coordinate Descent on (4) guarantees convergence only for smooth
R∗(.) (strongly convex R(.)), which does not hold for most of regularizers.

IUse Proximal Minimization to ensure convergence for any convex ERM.

Dual-Augmented Block Minimization

IThe Dual-Augmented Lagrangian method (or equivalently, Primal Proximal
Minimization) solves a series of augmented sub-problems

ŵ t+1
= arg min

w
F (w) +

1
2ηt
‖w − ŵ t‖2, (5)

which, by Theorem 1, has a dual problem of smooth R̃∗(.) since the augmented
regularizer R̃(w) is strongly convex.

ILet L(w ,α) be the Lagrangian of (5). Our algorithm performs Block-Coordinate
Descent on dual of (5), which minimizes block of variables αB via

max
αB

min
w
L(w ,α) = min

w
max
αB
L(w ,α)

= min
w

R(w) +
∑
n∈B

Ln(Φnw) + µT
B̄w +

1
2ηt
‖w − ŵ t‖2,

(6)

which requires only data in block B and can be solved via any solver designed
for (1), where vector µB̄ memorizes historical gradient given by data not in B:

µB̄ =
∑
n/∈B

ΦT
nαn =

N∑
n=1

ΦT
nαn −

∑
n∈B

ΦT
nαn = µ− µB (7)

IAfter solving block sub-problem (6), we obtain new α∗B and µ∗B via
α∗B = ∇ξBLoss(ξ∗B = ΦBw∗) µ∗B = ΦT

Bα
∗
B = ∇wLoss(ΦBw∗). (8)

IOnly one of αB or µB needs to be maintained. If d > |B|p, maintaining αB is
cheaper; otherwise, maintaining µB is more space-efficient.

Algorithmic Framework

Dual-Augmented Block Minimization Algorithm

1. Split data D into blocks B1,B2, ...,BK .
2. Initialize ŵ0

= 0, µ0 = 0.
for t = 0,1, ... (outer iteration) do
for s = 0,1, ...,S do
3.1.1. Draw B uniformly from B1,B2, ...,BK .
3.1.2. Load DB, µs

B (or αs
B) into memory.

3.1.3. Solve (6) to obtain w∗.
3.1.4. Maintain µs+1

B (or αs+1
B ) through relation (8).

3.1.5. Maintain µs+1 = µs
B̄

+ µs+1
B .

3.1.6. Save µs+1
B (or αs+1

B ) out of memory.
end for
3.2. ŵ t+1

= w∗(αS).
end for

Convergence of Block Minimization

IThe dual of (5) takes the form

min
αn∈Rp

R̃∗(−
N∑

n=1

ΦT
nαn) +

N∑
n=1

L∗n(αn) (9)

where R̃∗(.) is the convex conjugate of R̃(w) = R(w) + 1
2ηt
‖w −w t‖2.

ISince R̃(w) is strongly convex with parameter m = 1/ηt, the convex
conjugate R̃∗(.) is smooth with parameter M = ηt according to Theorem 1.

IThe augmented dual (9) is composite of a convex, smooth function plus a
convex, block-separable function, for which BCD has guaranteed
convergence to optimum. In particular, with probability 1− ρ

F̃ ∗(αs)− F̃ ∗ ≤ ε, for s ≥ βK log(
F̃ ∗(α0)− F̃ ∗

ρε
) (10)

for some constant β > 0 if (i) Ln(.) is smooth, or (ii) Ln(.) is polyhedral and
R(.) is also polyhedral or smooth. Otherwise, for any convex Ln(.), R(.),

F̃ ∗(αs)− F̃ ∗ ≤ ε, for s ≥ cK
ε

log(
F̃ ∗(α0)− F̃ ∗

ρε
), (11)

with some constant c > 0 and probability 1− ρ.

Convergence of Overall Procedure

IThe sequence {ŵ t}∞t=1 produced by Proximal Minimization (5) with ηt = η
and radius of initial level set R has

F (ŵ t+1
)− F ≤ ε, for t ≥ τ log(

ω

ε
). (12)

for some constant τ, ω > 0 if both Ln(.) and R(.) are (i) strictly convex and
smooth or (ii) polyhedral. Otherwise, for any convex F (w) we have

F (ŵ t+1
)− F ≤ R2/(2ηt). (13)

IDue to non-expansiveness of proximal operator, we show that solving
sub-problem (5) with tolerance ε/t suffices for convergence to ε overall
precision where t is the number of outer iterations required by (12), (13).

IThe overall procedure requires O(K log(1/ε) log(t/ε))=O(K log2(1/ε))
block minimization steps if Ln(.), R(.) are strictly convex and smooth, or
polyhedral. Otherwise, we need O(K (1/ε) log(t/ε)) = O(K

ε log(1/ε)) block
minimization steps as long as Ln(.) is smooth.

Experiments

Data #train #test dimension #non-zeros Memory (GB) Block
webspam 315,000 31,500 680,714 1,174,704,031 20.7 2.07

rcv1 202,420 20,242 7,951,176 656,977,694 12.0 2.20
year-pred 463,715 51,630 2,000 927,893,715 13.7 1.38

E2006 16,087 3,308 30,000 8,088,636 8.08 0.80
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