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Latent Feature Models
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@ Latent Feature Model (LFM) is a direct generalization of Mixture Model,
where each observation is an additive combination of several latent features.

Discriminative H Multiclass Classification ‘ Multilabel Classification
Generative H Mixture Model ‘ Latent Feature Model
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Latent Feature Models

@ In Latent Feature Model, each observation
Xp = WTz,, + €,

where x,, € RP: observation, W € RKXP: feature dictionary,
z, € {0,1}X: binary latent indicators, and €, € RP: noise.

e Mixture Model is a special case with ||z,||o = 1.
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Latent Feature Models: Result Summary

@ Goal: Find dictionary Wi« p and latent indicators Z : N x K that
best approximates observation X : N x D.

o Existing Approaches:
o MCMC, Variational (Indian Buffet Process):
No finite-time guarantee.
e Spectral Method (Tung 2014):
O(DK?®) sample complexity. (z ~Ber(r), x ~ N(WTz, o).
o Matrix Factorization (Slawski et al., 2013):
O(NK2K) runtime complexity for exact recovery (noiseless).

o This Paper:

o A convex estimator — Latent Feature Lasso.
o Low-order polynomial runtime and sample complexity.
o No restrictive assumption on p(X), even allows model mis-specification.

4/ 16



© Latent Feature Lasso—A Convex Estimator
@ Convex Formulation via Atomic Norm



Latent Feature Model: Estimation

Empirical Risk Minimization:

i i X — ZW|% + ~||W|% },
i L ohix- 2w+ Zjwi)

@ Given Z, the dual problem w.r.t. W is:

1 —tr (AATM ZL*(X,, —A; )}.

/

min max
M=ZZTc{0,1}NxN | AcRN*xD

g(M)

Key insight: the function is convex w.rt. M = ZZT.

Enforce structure M = ZZ T via an atomic norm.



Latent Feature Model: Estimation

Let S :={zz" | z € {0,1}"N}.
The " Latent-Feature” Atomic Norm:

M||s := mi t. M= T
M| s min Z c; s.t Z C,22

T zzTeS zzTeS

@ The Latent Feature Lasso estimator:
min g(M) + A|M]s.

@ Equivalently, one can solve the estimator by
2N

min g () cziz{ )+ Ml
ceRlSl —
+ k=1

Question: How to optimize with |S| = 2" variables?
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© Latent Feature Lasso—A Convex Estimator

@ Greedy Coordinate Descent via MAX-CUT
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Greedy Coordinate Descent via MAX-CUT

@ At each iteration, we find the coordinate of steepest descent:

j* = argmax — V;f(c) = argmax (—Vg(M),zz") (1)
J ze{0,1}N

which is a Boolean Quadratic problem similar to MAX-CUT:

max z'Cz
ze{0,1}N

@ Can be solved to a 3/5-approximation by roudning from a special
type of SDP with O(ND) iterative solver.
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Greedy Coordinate Descent via MAX-CUT

0. A=0,c=0.
fort=1...T do
1. Find an approximate greedy atom zz” by MAX-CUT-like problem:

—Vg(M),zzT).
zerFO?i(}N< g(M),zz")

2. Add zz" to an active set A.
3. Refine ¢ 4 via Proximal Gradient Method on:

rcnzlg g(z czizy ) + Alels
kEA

4. Eliminate {z,z]|cx = 0} from A.
end for.

@ Evaluating Vg(M) requires solving a least-square problem of cost O(DK?).
@ Each iteration costs O(ND) + O(DK?)
——  —

MAX-CUT  Least-Square
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© Theoretical Results
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Risk Analysis

Let the population risk of a dictionary W be

W) := E “x—wT
r(W) [ZE%'T}K HX z|?].

Let W* be an optimal dictionary of size K, the algorithm outputs W with
r(W) < r(W*) + ¢

as long as
DK

K RK
t=Q(— d N=Q(—lo .
(Z) an (s loa(—)
@ The result trades between risk and sparsity.

@ No assumption on x except that of boundedness.

@ The sample complexity is (quasi) linear to D and K.
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@ Empirical Results
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Results on Synthetic Data

#Features=4 #Features=35
0.25 T v . .
%
0.2+

0.15
w w
[} %2}
= S TN
x x X

0.1} e
1 —o— BP-Means
—+— LatentLasso
0.05 s
—a— MF-Binary
05 Spectral
Variational
0
0 0 10 20 30 40 50
K
KTrue

14 / 16



Results on Real Data
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o MCMC, Variational, BP-Means take up to 1000s trainimg time, while
LatentlLasso takes up to 100s.
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Conclusion

@ In this work, we propose a novel convex estimator (Latent Feature
Lasso) for the estimation of Latent Feature Model.

@ To best of our knowledge, this is the first method with low-order
polynomial runtime and sample complexity without restrictive
assumptions on the data distribution.

@ In experiments, the Latent Feature Lasso significantly outperforms
other methods in terms of accuracy and time, when there is a larger
number of latent features.
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