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Abstract
We consider multiclass and multilabel classifi-
cation with extremely large number of classes.
In such a setting, standard methods that have
training, prediction cost linear to the total num-
ber of classes become intractable. State-of-the-
art methods thus reduce complexity via structural
assumption between labels such as low rankness
or balanced tree. However, in practice, structural
assumption can be easily violated, which leads to
degradation in the prediction accuracy. In this pa-
per, we show that a margin-maximizing loss with
L1-penalty, in the case of Extreme Classification,
yields an extremely sparse solution both in pri-
mal and in dual without sacrificing the expressive
power of predictor. We thus propose a variant
of Block-Coordinate Frank-Wolfe algorithm that
exploits the sparsity to achieve complexity sub-
linear to number of primal and dual variables. In
our experiments on Extreme multiclass and mul-
tilabel problems, the proposed method achieves
significantly higher accuracy than existing ap-
proaches with very competitive training and pre-
diction time.

1. Introduction
Extreme Classification encompasses multiclass and multil-
abel problems with huge number of classes or labels. Prob-
lems of this kind are prevalent in real-world applications
such as text, image or video annotation, where one aims
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to learn a predictor that tags a data point with the most
relevant labels out of a huge collection. In the multiclass
setting, we are given the fact that only one label is correct,
while in the multilabel setting, multiple labels are allowed.

In the Extreme Classification setting, standard approaches
such as one-versus-all and one-versus-one become in-
tractable both in training and prediction phase due to
computations involving large number of model parameters
(Deng et al., 2010). Recently several approaches have been
proposed to exploit structural relations between labels for
reducing training and prediction time. A natural approach
is to find an embedding so the model parameters of each
label can be projected to a low-dimensional space, reduc-
ing the cost in training and prediction (Chen & Lin, 2012;
Yu et al., 2013; Kapoor et al., 2012). However, in real ap-
plications, the data may not be low-rank and the low-rank
approaches may result in lower accuracy. Furthermore,
for high-dimensional data with a sparse feature matrix, the
model learned from low-rank approach can project a sparse
feature vector into a dense vector that results in even higher
prediction cost than a simple linear classifer.

Another recent thread of research has investigated tree-
based methods that partition labels into tree-structured
groups, so in both training and prediction phases, one can
follow tree branches to avoid accessing irrelevant models
(Prabhu & Varma, 2014; Choromanska & Langford, 2015;
Choromanska et al., 2013). However, finding a balanced
tree structure that partitions labels effectively in the feature
space is a difficult problem in itself. While many heuris-
tics have been proposed for finding a good tree structure,
in practice, one needs to ensemble several trees to achieve
performance comparable to standard classifiers.

In this paper, instead of making a structural assumption on
the label relationships, we assume that for each instance,
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there are only a few correct labels and the feature space
is rich enough for one to distinguish between labels. This
assumption is much weaker than other structural assump-
tions, and under such an assumption, we show that a simple
margin-maximizing loss yields an extremely sparse dual
solution in the setting of extreme classification. Further-
more, the loss, when combined with `1 penalty, gives a
sparse solution both in the primal and in the dual for any
`1 regularization parameter λ > 0.

We thus propose a Fully-Corrective Block Coordinate
Frank-Wolfe algorithm to solve the primal-dual sparse
problem given by margin-maximizing loss with `1-`2
penalties. Let D be the problem dimension, N be the num-
ber of samples, and K be the number of classes. In case
DK � N , the proposed algorithm has complexity sub-
linear to the number of variables by exploiting sparsity in
the primal to search active variables in the dual. In case
DK . N , we propose a stochastic approximation method
to further speed up the search step in the Frank-Wolfe al-
gorithm.

In our experiments on both multiclass and multilabel prob-
lems, the proposed method achieves significantly higher
accuracy than existing approaches of Extreme Classifica-
tion with competitive training and prediction time.

2. Problem Formulation
Our formulation is based on the Empirical Risk Mini-
mization (ERM) framework. Given a collection of train-
ing instances D = {(xi,yi)}Ni=1 where xi ∈ RD is
D-dimensional (possibly sparse) feature vector of i-th in-
stance and yi ∈ {0, 1}K is label indicator vector with
yik = 1 if k is a correct label for the i-th instance and yik =
0 otherwise. We will use P(y) = {k ∈ [K] | yk = 1} to
denote positive label indexes, while using N (y) = {k ∈
[K] | yk = 0} to denote the negative label indexes. In
this work, we assume the number of labels K is extremely
large but the number of positive labels nnz(y) is small and
not growing linearly with K. For example, in multiclass
classification problem, we have nnz(y) = 1, and the as-
sumption is also satisfied typically in mulitlabel problems.
Denote X := (xTi )Ni=1 as the N × D design matrix and
Y := (yTi )Ni=1 as the N by K label matrix, our goal is to
learn a classifier h : RD → [K]

h(x) := argmax
k

〈wk,x〉, (1)

parameterized by a D ×K matrix W = (wk)Kk=1.

Loss with Dual Sparsity In this paper, we consider the
separation ranking loss (Crammer & Singer, 2003) that pe-
nalizes the prediction on an instance x by the highest re-
sponse from the set of negative labels minus the lowest re-

sponse from the set of positive labels

L(z,y) = max
kn∈N (y)

max
kp∈P(y)

(
1 + zkn − zkp

)
+

(2)

where an instance has zero loss if all positive labels kp ∈ Pi
have higher responses than that of negative labels kn ∈ Ni
plus a margin. In the multiclass setting, let p(y) be the
unique positive label. The loss (2) becomes the well-known
multiclass SVM loss

L(z,y) = max
k∈[K]\{p(y)}

(
1 + zk − zp(y)

)
+

(3)

proposed in (Crammer & Singer, 2002) and widely-used
in linear classification package such as LIBLINEAR (Fan
et al., 2008). The basic philosophy of loss (2) is that,
for each instance, there are only few labels with high re-
sponses, so one can boost prediction accuracy by learning
how to distinguish between those confusing labels. Note
the assumption is reasonable in Extreme Classification set-
ting where K is large and only few of them are supposed
to give high response. On the other hand, this does not
give much computational advantage in practice, since, to
identify labels of high response for each instances, one still
needs to evaluate (1) for ∀n ∈ [N ],∀k ∈ [K], resulting in
an O(nnz(X)K) complexity that is of the same order to
the one-vs-all approach. (Keerthi et al., 2008) proposed an
approach in the multiclass setting that tries to identify ac-
tive variables corresponding to labels of high responses in
the dual formulation of the `2-regularized instance

1

2

K∑
k=1

‖wk‖2 + C

N∑
i=1

L(WTxi, yi), (4)

where W = [w1,w2, ...,wK ]. Let αk := (αik)i∈[N ] and
αi := (αik)k∈[K]. The dual problem is of the form

min
α

1

2

K∑
k=1

‖wk(α)‖2 +

N∑
i=1

eTαi

s.t. αi ∈ ∆K
i , ∀i ∈ [N ]

(5)

where

wk(αk) =

N∑
i=1

αikxi = XTαk, (6)

ei = 1 − yi, and ∆K
i = {α |

∑K
k=1 αk = 0, αp(yi) ≤

C, αk ≤ 0, ∀k 6= p(yi)} is a shifted simplex of K cor-
ners. In particular, the optimal solution α of (5) satisfies:
for k 6= p(yi), α∗ik 6= 0 if and only if label k has high-
est response zik = 〈wk,xi〉 that attains the maximum of
(3). Therefore, to identify active variables that correspond
to the confusing labels, (Keerthi et al., 2008) proposes a
shrinking heuristic that ”shrinks” a dual variable whenever
its descent direction towards the boundary. The shrunken
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variables are then excluded from the optimization, which
in practice reduces training time by orders of magnitude.
While the shrinking heuristic is quite successful for prob-
lem of medium number of classK. For problem ofK more
than 104 labels, the technique becomes impractical since
even computing gradient for each of the N ×K variables
once requires days of time and hundreds of gigabytes of
memory (as shown in our experiments).

Primal and Dual-Sparse Formulation One important
observation that motivates this work is the intriguing prop-
erty of ERM with dual-sparse loss (2) and `1 penalty

λ

K∑
k=1

‖wk‖1 +

N∑
i=1

L(WTxi,yi). (7)

in the setting of Extreme Classification. Consider the opti-
mal solution W ∗ of (7), which satisfies

λρ∗k +

N∑
i=1

α∗ikxi = λρ∗k +XTαk = 0, ∀k ∈ [K] (8)

for some subgradients ρ∗k ∈ ∂‖w∗k‖1 and αi∗ ∈
∂zL(zi,yi) with zi = W ∗Txi. Recall that the subgra-
dients αi of loss (2) have αik∗ 6= 0 for some k∗ 6= k̄ only
if k∗ is the confusing label that satisfies

k∗ ∈ argmax
k 6=k̄
〈wk,xi〉.

This means we have nnz(αi) � K and nnz(A) � NK
as long as there are few labels with higher responses than
the others, which is satisfied in most of Extreme Classifi-
cation problems. On the other hand, the subgradient ρk of
`1-norm satisfies

ρjk =


1, w∗jk > 0

−1, w∗jk < 0

ν, ν ∈ [−1, 1], w∗jk = 0,
(9)

which means the set of non-zero primal variables B∗k =
{j | w∗jk 6= 0} at optimal satisfies

λ sign([w∗k]B∗k)1B∗k =
[
XTα∗k

]
B∗k
, (10)

which is a linear system of |B∗k| equality constraints and
nnz(αk) variables. However, for general design matrix
X that draws from any continuous probability distribution
(Tibshirani et al., 2013), the above cannot be satisfied un-
less

nnz(w∗k) = |B∗k| ≤ nnz(α∗k),∀k ∈ [K] (11)

and (11) further implies

nnz(W ∗) ≤ nnz(A∗) (12)

by summation over K, where A∗ an N × K matrix of
stacked (α∗k)Kk=1. This means in Extreme Classification
problem, not only non-zero dual variables but also primal
variables are sparse at optimal. Note this result holds for
any `1 parameter λ > 0, that means it does not gain primal
sparsity via sacrificing the expressive power of the predic-
tor. Instead, it implies there exists a naturally sparse op-
timal solution W ∗ under the loss (2), which can be found
through imposing a very small `1 penalty. The result is ac-
tually a simple extension to the fact that the number of non-
zero weights at optimal under `1 penalty is less or equal to
the number of samples (Tibshirani et al., 2013). We sum-
marize the result as following Corollary.
Corollary 1 (Primal and Dual Sparsity). The optimal pri-
mal and dual solution (W ∗, A∗) of ERM problem (7) with
loss (2) satisfies

nnz(W ∗) ≤ nnz(A∗)

for any λ > 0 if the design matrix X is drawn from a con-
tinuous probability distribution.

Dual Optimization via Elastic Net Although (7) has su-
perior sparsity, both the primal and dual optimization prob-
lems for (7) are non-smooth and non-separable w.r.t. coor-
dinates, where greedy coordinate-wise optimization could
be non-convergent 1. However, from the duality between
strong convexity and dual smoothness (Kakade et al., 2009;
Meshi et al., 2015), this issue can be resolved simply via
adding an additional strongly convex term in the primal. In
particular, by adding an `2 regularizer to (7), the Elastic-
Net-regularized problem

K∑
k=1

1

2
‖wk‖2 + λ‖wk‖1 + C

N∑
i=1

L(WTxi,yi) (13)

has dual form

min
α

G(α) :=
1

2

K∑
k=1

‖wk(αk)‖2 +

N∑
i=1

eTi α
i

s.t. αi ∈ Ci, ∀i ∈ [N ]

(14)

that entangles variable of different samples αi, αi
′

only
through a smooth term

∑K
k=1 ‖wk(αk)‖2/2, where

wk(αk) := proxλ‖.‖1(XTαk). (15)

and

Ci :=

{
α

∣∣∣∣ ∑k∈Ni(−αk) =
∑
k∈Pi αk ∈ [0, C],

0 ≤ αk,∀k ∈ Pi, αk ≤ 0,∀k ∈ Ni

}
.

(16)
The proximal operator of `1-norm proxλ‖.‖1(v) performs
soft-thresholding to each single element vj as

proxλ|.|(vj) :=

 0, |vj | ≤ λ
vj − λ, vj > λ
vj + λ, vj < λ
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The dual problem (14) has very similar form to that from
purely `2 regularized problem (5), with difference on the
definition ofwk (15), where the `1-`2-regularized problem
has wk(αk) being a sparse vector obtained from apply-
ing soft-thresholding operator to XTαk. This, however,
leads to the key to our efficiency gain. In particular, the
objective allows efficient search of active dual variables via
sparsity in the primal, while allows efficient maintenance
of nonzero primal variables through an active-set strategy
in the dual.

Note the Elastic-Net-regularized problem could not satisfy
corollary 1. However, empirically, it has been observed to
produce solution of sparsity close to that from `1 regular-
izer, while the solution from Elastic-Net is often of higher
prediction accuracy (Zou & Hastie, 2005). In our experi-
ments, we have observed extremely sparse primal solution
from (13) which not only help in the training phase but
also results in faster prediction that is competitive to the
logarithmic-time prediction given by tree-based approach
(Choromanska & Langford, 2015).

3. Algorithm
The objective (14) comprises a smooth function subject to
constraints C1, .., CN separable w.r.t. blocks of variables
α1,α2, ...,αN . A fast convergent algorithm thus mini-
mizes (14) one block at a time. In this section, we propose a
Fully-Corrective Block-Coordinate Frank-Wolfe (BCFW)
for the dual problem (14) that explicitly taking advantage
of the primal and dual sparsity.

Note for the similar dual problem (5) resulted from L2-
regularization, a BCFW method that searches the greedy
coordinate α∗ik at each iterate is not better than a Block Co-
ordinate Descent (BCD) algorithm that performs updates
on the whole block of variableαi (Keerthi et al., 2008; Fan
et al., 2008), since the greedy search requires evaluation of
gradient w.r.t. each coordinate, which results in the same
cost to minimizing the whole block of variables, given the
minimization can be done via a simplex projection.

On the other hand, our dual objective (14) has gradient of
i-th block equals

∇αiG(α) = WTxi − ei. (17)

If a primal-sparse W can be maintained via (15), the gra-
dient can be evaluated in time O(nnz(xi)nnz(wj)) (and
O(nnz(W )) for dense xi). In contrast, the update of the
whole block of variableαi would require maintaining rela-
tion (15) forw1...wK , which cannot exploit sparsity ofwk

and would require O(nnz(xi)K) (and O(DK) for dense

1The coordinate descent method has global convergence only
on problem where the non-smooth terms are separable w.r.t. the
coordinates.

Algorithm 1 Fully-Corrective BCFW
0: Initialize α0 = 0, A0 = ∅.

for t = 1...T do
1: Draw a sample index i ∈ [N ] uniformly at random.
2: Find most-violating label k∗ ∈ Ni via (20).
3: At+

1
2

i = Ati ∪ {k∗}.
4: Solving subproblem (21) w.r.t. active set At+

1
2

i .

5: At+1
i = At+

1
2

i \ {k | αik = 0, k /∈ Pi}.
6: Maintain w(α), v(α) via (23).

end for.

xi). So in the Extreme Classification setting, the cost of
updating an coordinate is orders of magnitude larger than
cost of evaluating its gradient.

3.1. Fully-Corrective Block-Coordinate Frank Wolfe
(FC-BCFW)

As a result, we employ a BCFW strategy where the updates
of variables are restricted to an active set of labels Ati for
each sample i. In each iteration, the BCFW method draws
a block of variables αi uniformly from {αi}Ni=1, and finds
greedy direction based on a local linear approximation

αitFW := argmin
αi∈Ci

〈∇αiG(αt),αi〉. (18)

For Ci of structure (16), (18) is equivalent to finding the
most violating pair of positive, negative labels:

(k∗n, k
∗
p) := argmin

kn∈Ni,kp∈Pi
〈∇αiG(αt), (δkp−δkn)〉, (19)

where δk is K × 1 indicator vector for k-th variable. How-
ever, since we are considering problem where |Pi| is small,
we can keep all positive labels in the active set Ai. Then
to guarantee that the FW direction (18) is considered in the
active set, we only need to find the most-violating negative
label:

k∗n := argmax
kn∈Ni

〈∇αiG(αt), δkn〉,

= argmax
kn∈Ni

〈wt
k,xi〉 − 1

(20)

which can be computed in O(nnz(xi)nnz(wj̄)), where j̄
is the feature j of most non-zero labels in W , among all
nonzero features xi.

After adding k∗n to the active set, we minimize objective
(14) w.r.t. the active set and fix αik = 0 for ∀k /∈ Ai.
By noticing that the Hessian matrix ∇2

iiG w.r.t. a block of
variables αi is a diagonal matrix of diagonal element

∇2
αik
G = [xi]

T
Bk [xi]Bk ≤ ‖xi‖2

where [.]Bk denotes the sub-vector by taking indexes be-
longing to the primal non-zero variables of k-th label, one
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Algorithm 2 Projection for Subproblem (21)
minx,y ‖x− b‖22 + ‖y − c‖22
s.t. x � 0,y � 0, ‖x‖1 = ‖y‖1 = t ∈ [0, C]
Also, WLOG assume b0 ≥ . . . ≥ bN−1, c0 ≥ . . . ≥ cM−1

0: Sb(n) =
∑n
k=0 bk, Sc(m) =

∑m
k=0 ck, Db(n) =

Sb(n)− (n+ 1)bn, Dc(m) = Sc(m)− (m+ 1)cm,
1: Use points in {Db(n), Dc(m)} to split interval [0, C].

for each interval I = [l, r] do
2: nI = max

Db(n)≤l
n, mI = max

Dc(m)≤l
m

3: tI = (nI+1)Sc(mI)+(mI+1)Sb(nI)
(nI+mI+2) clip to [l, r]

4: vI =
∑N−1
k=nI+1 b

2
k +

∑M−1
k=mI+1 c

2
k + (Sb(nI)−tI)2

nI+1 +
(Sc(mI)−tI)2

mI+1 , update I∗ = argminI vI .
end for

5: xk =

{
0 if k > nI∗

b[k] + (tI∗ − Sb(nI∗)/(nI∗ + 1) else

6: yk =

{
0 if k > mI∗

c[k] + (tI∗ − Sc(mI∗)/(mI∗ + 1) else

can use ‖xi‖2 as a simple upper bound on each diagonal
element of the Hessian matrix, and solves the following
block subproblem

min
αAi∈Ci

〈∇αAiG,αAi −α
t
Ai〉+

Qi
2
‖αAi −αtAi‖

2

(21)
where Qi = ‖xi‖2 and Ai = Ati ∪ {k∗n}. Note, when
|Pi| = 1, the subproblem (21) can be solved by a simple
projection to simplex of complexity O(|Ai| log |Ai|). For
|Pi| > 1, we derive a similar procedure that generalizes
projection of simplex to that for the constraint Ci of the
same complexity. The problem can be expressed as (22),
and solved as depicted in Algorithm 2.

min
αAi∈Ci

‖(−αNiAi)− b‖
2
2 + ‖αPiAi − c‖

2
2

s.t. αPiAi ,α
Ni
Ai is a partition of αAi w.r.t. Pi,Ni

bk = (〈wt
k,xi〉+ 1)/Qi −αtAi(k),∀k ∈ Ni

ck = αtAi(k)− 〈wt
k,xi〉/Qi,∀k ∈ Pi

(22)

After solving the subproblem (21) w.r.t. active set Ai, we
updatewk(αtk) towk(αt+1

k ) by maintaining an additional
vector vtk such that

vtk = XTαtk, wt
k = proxλ‖.‖(v

t
k). (23)

where maintaining the first relation costs O(nnz(xi)|Ai|)
and maintaining the second requires the same cost by
checking only values changed by the first step. Note to
evaluate (20) efficiently for k ∈ Ni, one needs to main-
tain not onlywk that supports random access but also a list

of nonzero indexes for each feature j ∈ [D], which can
be maintained as a hashed set in order to be updated ef-
ficiently in (23) and also traversed efficiently in (20). We
will describe how to design an optimized data structure for
this task in section 4.2.

The procedure is summarized in Algorithm 1. Note in prac-
tice, we use sampling without replacement instead of uni-
form sampling with replacement at step 1 of algorithm 1
that ensures (i) every sample is updated at least once and
(ii) the size of active set |Ai| is bounded by the number of
BCFW pass.

The overall space requirement of Algorithm 1 for storing
non-zero dual variables {αi}Ni=1 is bounded by |A| �
NK, while the storage for maintaining primal variable is
dominated by the space for {vk}Kk=1, which in the worst
case, requires O(DK). However, by the definition of
vk (23), the number of non-zero elements in {vk}Kk=1

is bounded by O(nnz(X) maxi(|Ai|)), with maxi(|Ai|)
bounded by the number of BCFW passes. This means the
space requirement of the algorithm is only t times of the
data size nnz(X) for running t iterations. In practice, |Ai|
converges to the number of active labels of sample i and
does not increase after certain number of iterations.

The overall complexity for each iterate of FC-BCFW is
O(nnz(xi)nnz(w

t
j̄
) + nnz(xi)|Ati|). In case data matrix

is dense the cost for one pass of FC-BCFW over all vari-
ables can be written as O(Nnnz(W ) +Dnnz(A)), where
A is the N by K matrix reshape of α. Let

kW := nnz(W )/D , kA := nnz(A)/N

be the average number of active labels per feature and per
sample respectively. We have

O(Nnnz(W ) +Dnnz(A)) = O(NDkW +NDkA).

Note kA is bounded by the number of BCFW passes, and
it is generally small when label has diverse responses on
each instance. On the other hand, suppose the Elastic-Net
penalty leads to sparsity similar to that of `1-regularized
problem (which we observed empirically). We have
nnz(W ) . nnz(A) and thus kW . N

D kA, which means
kW is small if D ≈ N . On the other hand, for prob-
lem of small dimension, the bound becomes useless as the
N
D kA can be even larger than K. In such case, the search
(20) becomes bottleneck. In the next section, we propose a
stochastic approximation technique in section 3.2 to further
speed up the greedy search step (20).

3.2. Bi-stochastic Approximate Greedy Search

In this section, we consider a bi-stocahstic faster alternative
to the direction computation of (20) when kW >> kA, that
is, when the search step (20) a bottleneck of iterate.
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The first approximation scheme divides K into ν mutu-
ally exclusive subsets [K] =

⋃ν
q=1 Y(q), and realizes an

approximate greedy search by first sampling q uniformly
from [ν] and returning

k̂ = arg max
k∈Y(q)

〈wt
k,xi〉. (24)

as the approximate Frank-Wolfe direction. Note there is at
least 1/ν probability a partition Y(q) containing label k∗

is drawn, so the approximation scheme guarantees a multi-
plicative approximation factor on the expected progress. In
section 3.3, we show that Algorithm 1 has convergence to
the optimum under approximation (24), with a rate scaled
by 1/ν. Since (24) reduces the time spent on search by a
factor of 1/ν, the worst-case analysis gives the same over-
all complexity. In practice (24) reduces training time sig-
nificantly since the active set Ai typically identifies all the
labels that are stably active after a few iterates.

Another approximation scheme that can be used jointly
with (24) is importance sampling on the non-zero feature
indexes of xi. Let di = nnz(xi). We sample d̃i non-zero
features with probability |xij |/‖xi‖1 for j feature. Denote
Di as the set of feature indices obtained from sampling. We
further approximate (24) via

k̂ = arg max
k∈Y(q)

C̄k(Di), (25)

where C̄k(Di) = ‖xi‖1
d̃i

∑
j∈Di w

t
kjsign(xij) is an un-

biased estimator of 〈wt
k,xi〉. The scheme (25) reduces

search time by another factor of d̃i/di. In fact, with proba-
bility 1−δ, |C̄k(Di)−〈wt

k,xi〉| ≤ εd holds for all k ∈ [K],
given that

d̃i & di
‖xi‖2∞R2

w log(Kδ )

ε2d
, (26)

where R2
w is an upper bound on

∑
j:xij 6=0(wt

kj)
2. One can

find the proof of (26) in Appendix C. Based on (26), we
will discuss how to choose d̃i in practice in section 4.4.

The effect of (25) is a (1/ν, εd/ν) multiplicative-additive
approximation factor on the expected descent amount of
the iterate.

3.3. Convergence

The following theorem gives convergence result of the FC-
BCFW Algorithm. The analysis follows the convergence
proof in (Lacoste-Julien et al., 2013). We provide details in
Appendix A.
Theorem 1 (Convergence of FC-BCFW). Let G(α) be
the dual objective (14). The iterates {αt}∞t=1 given by
the Fully-Corrective Block-Coordinate Frank-Wolfe (Algo-
rithm 1) has

G(αt)−G∗ ≤ 2(QR2 + ∆G0)

t/N + 2
, t ≥ 0 (27)

where Q =
∑N
i=1Qi, ∆G0 := G(α0)−G∗ and R = 2C

is the diameter of the domain (16).

Note our objective G(αt) is N times of the objective de-
fined by average loss in for example (Lacoste-Julien et al.,
2013; Shalev-Shwartz & Zhang, 2013), so one would di-
vide both sides of (27) by N to compare the rates. The
following gives convergence of FC-BCFW when sampling
approximation (25) is used.

Theorem 2 (Convergence with Sampling Approximation).
Let G(α) be the dual objective (14). The iterates {αt}∞t=1

given by the Fully-Corrective Block-Coordinate Frank-
Wolfe (Algorithm 1) with sampling approximation (24),
(25) has

G(αt)−G∗ ≤ 4(QR2 + ∆G0)

t/Nν + 2
, t ≥ 0 (28)

for t ≤ (2QR2ν)/εd.

4. Practical Issues
4.1. Efficient Implementation for Sparse Data Matrix

When nnz(xi)� D, it is crucial to exploit sparsity of both
wk and xi in the computation of search step (20), (24) or
(25). Let zi be a length-K vector with zik = 〈wk,xi〉. We
maintain {wj}Dj=1, where wj := (wjk)k∈[K], as sparse
vectors using hashtable implementation specified in Sec.
4.2, and compute zi via zi =

∑
j:xij 6=0 xijwj which can

be realized in time O(nnz(xi)nnz(wj)). And when sam-
pling (25) is used, we divide wj into ν sparse vectors
{wq

j}νq=1 maintained separately, and compute (25) via

zqi =
∑
j∈Di

xijw
q
j (29)

where zqi is of length K/ν.

4.2. Hashing under Limited Memory

In Extreme Classification setting, both the N × K matrix
A and D × K matrices W , V cannot be stored as array
in memory. On the other hand, a general-purpose hash ta-
ble is significantly slower than array due to expensive hash
function evaluation. In our implementation, each matrix is
stored as an array of hashtables that share the same hash
function h : [K]→ [K] constructed by a random permuta-
tion of [K], so the hash function only needs to be evaluated
once for all hashtables, giving an efficiency close to array.

4.3. Post Processing after Variable Selection

The purpose of using `1 regularization is to select a small
subset of primal variables for scalability. However, in
some cases, optimizing a purely `2-regularized problem
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Table 1. Results on multiclass data sets: N= number of train samples, K = number of classes, D = number of features, the best results
among all solvers are marked. Multi-SVM is not applicable to Dmoz due to > 200G memory requirement. We mark accuracy of
PD-Sparse with ”*” if the post processing discussed in Sec. 4.3 improves accuracy.

Data FastXML LEML 1vsA-Logi 1vsA-SVM Multi-SVM 1vsA-L1-Logi PD-Sparse VW(oaa) VW(Tree) SLEEC
LSHTC1 train time 2131s 78950s ≈ 6d 23744s 6411s ≈ 14d 952s 28129s 1193s 10793s
N=83805 model size 308M 7.7G ≈ 57G 11G 4.5G ≈ 57M 92M 2.4G 744M 1.38G
D=347255 predict time 6.33s 189s N/A 50.3s 49.0s N/A 6.20s 80.0s 6.84s 155s
K=12294 test acc(%) 21.66 16.52 N/A 23.22 22.4 N/A 22.66∗ 14.4 10.56 12.8

Dmoz train time 6900s 97331s ≈ 27d 136545s N/A ≈ 565d 2068.14s 361943s 7103s 113200s
N=345068 model size 1.5G 3.6G ≈ 96G 19G N/A ≈ 406M 40M 4.3G 1.8G 3.23G
D=833484 predict time 57.1s 1298s N/A 429.7s N/A N/A 6.74s 548.3s 28s 3292s
K=11947 test acc(%) 38.4 31.28 N/A 36.8 N/A N/A 39.58 35.44 21.27 32.49
imgNet train time 28440s 107490s 380971s 28640s 14510s 472611s 4958s 9283s 6492s 520570s

N=1261404 model size 914M 13M 14M 23M 24M 1.8M 3.6M 7.7M 35M 2.76G
D=1000 predict time 139s 554s 315.3s 136.8s 203.4s 390.5s 329.5s 191s 37.7s 45372s
K=1000 test acc(%) 6.48 7.21 8.56 15.25 10.3 10.07 12.7 8.51 5.37 8.5
aloi.bin train time 2410s 62440s 42390s 9468s 449s 31770s 773.8s 2097.4s 334.3s 12200s

N=100000 model size 992M 5.4G 15G 5.9G 612M 18M 7.1M 1.9G 106M 1.96G
D=636911 predict time 10.99s 38.83s 16.61s 22.83s 12.42s 13.24s 1.42s 14.01s 1.59s 191s
K=1000 test acc(%) 95.5 88.16 96.34 96.63 96.66 95.71 96.33 96.54 89.47 92.55
sector train time 100.77s 556.31s 107.12s 19.46s 11.46s 102.31s 14.12s 153.7s 327.34s 164.3s

N=8658 model size 7.0M 48M 129M 62M 57M 580K 1.6M 47M 17M 223.5M
D=55197 predict time 0.25s 0.069s 0.114s 0.156s 0.169s 0.13s 0.09s 0.28s 0.16s 1.59s
K=105 test acc(%) 84.9 94.07 90.8 94.79 95.11 93.13 95.3∗ 92.09 82.1 87.62

with features selected by `1 regularization yields better per-
formance. In our solver, we implement a post-processing
step which solves a `2-regularized problem with only pri-
mal and dual variables in the active sets obtained by solv-
ing (13). We construct a Nk ×Dk data submatrix for each
label which stores an element xij only if α∗ik 6= 0 ”and”
w∗jk 6= 0 for the optimal solution (α∗,w∗) of (13). Note
the data submatrix of each label is extremely small given
the sparsity of α∗, w∗. Therefore, one can solve the post-
processing `2-regularized problem very efficiently.

4.4. Parameters for Bi-stochastic Search

In practice, we set

R2
w =

CNdi
DK

&
di
DK

K∑
k=1

‖wt
k‖22 ≈ sup

k,i
{
∑

j:xij 6=0

(wt
kj)

2},

where the first inequality is from (40) (Appendix C), and
the second approximation is an assumption on distribution
of W . Suppose xi is scaled so ‖xi‖∞ ≤ 1. (26) becomes

d̃i & di
CNdi log(Kδ )

ε2dDK
(30)

We use nnz(X) to esimateNdi and set the speed up rate to
be di

d̃i
= dmin( 5DK

Cnnz(X) logK ,
nnz(X)

5N )e, ∀i in our imple-
mentation. To further amortize the cost of greedy search,
for each iteration, if the amount of time spent on Greedy
Search is more than twice of the time spent on the rest
of other operations, we double the number of coordinates
(with largest scores) returned by the search (25).

5. Experiments
In this section we compare our proposed Primal-Dual
Sparse(PD-Sparse) method with existing approaches to
multiclass and multilabel problems. In all experiments,
we set C=1 for all methods based on Empirical Risk Mini-
mization, and choose ν = 3 and λ ∈ {0.01, 0.1, 1, 10} that
gives best accuracy on a heldout data set for our method.
To prevent over-fitting, we compute accuracy on a held-
out data set to determine number of iterations used in all
the iterative solvers. The compared algorithms are listed as
follows.

• LibLinear (Fan et al., 2008) one-versus-all logistic re-
gression (1vsA-Logi).

• LibLinear one-vs-all SVM (1vsA-SVM).

• LibLinear multiclass SVM (Multi-SVM).

• LibLinear one-vs-all l1-regularized logistic regression
solver (1vsA-L1-Logi).

• Vowpal-Wabbit (VW): A public fast learning system
proposed in (Choromanska & Langford, 2015) for Ex-
treme multiclass classification. We use one-against-all
(oaa) and online trees (Tree) options provided by their
solver.

• FastXML: An Extreme multilabel classification
method (Prabhu & Varma, 2014) that organizes mod-
els with tree structure. We use solver provided by the
author with default parameters.

• LEML: A low-rank Empirical-Risk-Minimization
solver from (Yu et al., 2013). We use solver pro-
vided by the authors with rank chosen to be lowest
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Table 2. Results on Multilabel data sets,N= number of training samples,K = number of classes,D = number of features. The accuracy
means ”top-1” accuracy (precision). Note that SLEEC’s performance highly depends on a set of 9 parameters. Here results are obtained
using default parameters of the solver (given in Table 4, Appendix B). An optimized parameter set may give better result.

Data FastXML LEML 1vsA-Logi 1vsA-SVM 1vsA-L1-Logi PD-Sparse SLEEC
LSHTC-wiki train time 104442s 217190s >10y >96d >10y 124867s 2224000s
N=2355436 model size 8.9G 10.4G ≈ 426G ≈870G ≈ 358M 685M 12.6G
D=2085167 predict time 164.8s 2896s N/A N/A N/A 15.56s 8906s
K=320338 test acc % 78.28 28.46 N/A N/A N/A 89.3∗ 73.44
EUR-Lex train time 317s 7471s 22551s 3227s 32531s 434.9s 2443s
N=15643 model size 324.5M 78M 257M 118M 14M 8.0M 80.8M
D=5000 predict time 0.996s 42.24s 7.93s 7.23s 1.39s 1.089s 4.89s
K=3956 test acc % 67.3 67.82 77.3 64.5 73.8 76.3 74.2

RCV1-regions train time 94.06s 2247s 79.27s 14.73s 84.74s 8.82s 1129s
N=20835 model size 14.61M 205M 129M 39M 504K 1.7M 204M
D=47237 predict time 0.824s 2.515s 0.486s 0.392s 0.174s 0.115s 15.8s
K=225 test acc % 93.28 96.28 90.96 95.98 94.7 96.54 91
bibtex train time 18.35s 157.9s 8.944s 3.24s 13.97s 5.044s 298s

N=5991 model size 27M 8.6M 3.7M 3.3M 412K 68K 26.7M
D=1837 predict time 0.09s 0.2215s 0.0383s 0.079s 0.0238s 0.0059s 0.94s
K=159 test acc % 64.14 64.01 62.65 58.46 61.16 64.55 65.09

from {50, 100, 250, 500, 1000} that gives accuracy on
heldout data set not worse than the best by 1%.

• SLEEC: A method based on Sparse Local Embed-
dings for Extreme multilabel classification (Bhatia
et al., 2015). We use solver provided by the author
with default parameters.

Among these solvers, LibLinear multiclass SVM, Vowpal-
Wabbit are only for multiclass problems. All other solvers
can be used on both multiclass and multilabel data sets.
Note FastXML, LEML and SLEEC are designed for multi-
label problems but also applicable to multiclass problems.

Our experiments are conducted on 9 public data sets.
Among them, LSHTC1, Dmoz, imagenet, aloi.bin and
sector are multiclass and LSHTC-wiki, EUR-Lex, RCV1-
regions, bibtex are multilabel. ImageNet uses bag-of-word
features downloaded directly from ImageNet 2. EUR-Lex
and bibtex are from Mulan multilabel data collections. 3

LSHTC1, Dmoz and LSHTC-wiki are from LSHTC2 com-
petition described in (Partalas et al., 2015). RCV1-regions,
aloi.bin and sector are from LIBSVM data collection 4,
where aloi.bin uses Random Binning features (Rahimi &
Recht, 2007; Yen et al., 2014) approximating effect of RBF
Laplacian kernel.

The statistics of data sets and results are shown in Table 1
and 2. We include statistics of test and heldout data set in
Appendix B. Note many one-vs-all solvers require running
for a huge amount of time. We run a distributed version
and use training time and models of at least 100 classes to
estimate the expected total running time and model size.

2http://image-net.org/
3mulan.sourceforge.net/datasets-mlc.html
4www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

datasets/multilabel.html

Table 3. Average number of active dual and primal variables (kA,
kW respectively) when parameter λmaximizes heldout accuracy.

Data sets kA kW
EUR-Lex (K=3956) 20.73 45.24

LSHTC-wiki (K=320338) 18.24 20.95
LSHTC (K=12294) 7.15 4.88
aloi.bin (K=1000) 3.24 0.31

bibtex (K=159) 18.17 1.94
Dmoz (K=11947) 5.87 0.116

As showed in the table, solvers rely on structural assump-
tions such as FastXML (tree), VW (tree), LEML (low-
rank) and SLEEC (piecewise-low-rank) could obtain accu-
racy significantly worse than standard one-vs-all methods
on multiclass data sets. Standard multiclass solvers how-
ever suffer from complexity growing linearly with K. On
the other hand, by exploiting primal and dual sparsity in-
herent in Extreme Classification problem, PD-Sparse has
training time, prediction time and model size growing sub-
linearly with K while keeping a competitive accuracy. As
showed in Table 3, the average number of active dual vari-
ables for each sample is much smaller than the number of
classes.

Acknowledgements
This research was supported by NSF grants CCF-1320746
and IIS-1546459, IIS-1149803, IIS-1320894, IIS-1447574,
and DMS-1264033, ARO grants W911NF-12-1-0390,
and NIH grant R01 GM117594-01 as part of the Joint
DMS/NIGMS Initiative to Support Research at the Inter-
face of the Biological and Mathematical Sciences.

http://image-net.org/
mulan.sourceforge.net/datasets-mlc.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html


PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification

References
Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Varma,

Manik, and Jain, Prateek. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural
Information Processing Systems, pp. 730–738, 2015.

Chen, Yao-Nan and Lin, Hsuan-Tien. Feature-aware label
space dimension reduction for multi-label classification.
In Advances in Neural Information Processing Systems,
pp. 1529–1537, 2012.

Choromanska, Anna, Agarwal, Alekh, and Langford, John.
Extreme multi class classification. In NIPS Workshop:
eXtreme Classification, submitted, 2013.

Choromanska, Anna E and Langford, John. Logarithmic
time online multiclass prediction. In Advances in Neural
Information Processing Systems, pp. 55–63, 2015.

Crammer, Koby and Singer, Yoram. On the algorithmic
implementation of multiclass kernel-based vector ma-
chines. The Journal of Machine Learning Research, 2:
265–292, 2002.

Crammer, Koby and Singer, Yoram. A family of additive
online algorithms for category ranking. The Journal of
Machine Learning Research, 3:1025–1058, 2003.

Deng, Jia, Berg, Alexander C, Li, Kai, and Fei-Fei, Li.
What does classifying more than 10,000 image cate-
gories tell us? In Computer Vision–ECCV 2010, pp.
71–84. Springer, 2010.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang,
Xiang-Rui, and Lin, Chih-Jen. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874, 2008.

Kakade, Sham, Shalev-Shwartz, Shai, and Tewari, Am-
buj. On the duality of strong convexity and strong
smoothness: Learning applications and matrix regular-
ization. Unpublished Manuscript, http://ttic. uchicago.
edu/shai/papers/KakadeShalevTewari09. pdf, 2009.

Kapoor, Ashish, Viswanathan, Raajay, and Jain, Pra-
teek. Multilabel classification using bayesian com-
pressed sensing. In Advances in Neural Information Pro-
cessing Systems, pp. 2645–2653, 2012.

Keerthi, S Sathiya, Sundararajan, Sellamanickam, Chang,
Kai-Wei, Hsieh, Cho-Jui, and Lin, Chih-Jen. A sequen-
tial dual method for large scale multi-class linear svms.
In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pp. 408–416. ACM, 2008.

Lacoste-Julien, Simon, Jaggi, Martin, Schmidt, Mark, and
Pletscher, Patrick. Block-coordinate frank-wolfe op-
timization for structural svms. In ICML 2013 Inter-
national Conference on Machine Learning, pp. 53–61,
2013.

Langley, P. Crafting papers on machine learning. In Lang-
ley, Pat (ed.), Proceedings of the 17th International Con-
ference on Machine Learning (ICML 2000), pp. 1207–
1216, Stanford, CA, 2000. Morgan Kaufmann.

Meshi, Ofer, Mahdavi, Mehrdad, and Schwing, Alex.
Smooth and strong: Map inference with linear conver-
gence. In Advances in Neural Information Processing
Systems, pp. 298–306, 2015.

Partalas, Ioannis, Kosmopoulos, Aris, Baskiotis, Nicolas,
Artieres, Thierry, Paliouras, George, Gaussier, Eric, An-
droutsopoulos, Ion, Amini, Massih-Reza, and Galinari,
Patrick. Lshtc: A benchmark for large-scale text classi-
fication. arXiv preprint arXiv:1503.08581, 2015.

Prabhu, Yashoteja and Varma, Manik. Fastxml: a fast, ac-
curate and stable tree-classifier for extreme multi-label
learning. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 263–272. ACM, 2014.

Rahimi, Ali and Recht, Benjamin. Random features for
large-scale kernel machines. In Advances in neural in-
formation processing systems, pp. 1177–1184, 2007.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual
coordinate ascent methods for regularized loss. The
Journal of Machine Learning Research, 14(1):567–599,
2013.

Tibshirani, Ryan J et al. The lasso problem and uniqueness.
Electronic Journal of Statistics, 7:1456–1490, 2013.

Yen, Ian En-Hsu, Lin, Ting-Wei, Lin, Shou-De, Raviku-
mar, Pradeep K, and Dhillon, Inderjit S. Sparse random
feature algorithm as coordinate descent in hilbert space.
In Advances in Neural Information Processing Systems,
pp. 2456–2464, 2014.

Yu, Hsiang-Fu, Jain, Prateek, Kar, Purushottam, and
Dhillon, Inderjit S. Large-scale multi-label learning with
missing labels. arXiv preprint arXiv:1307.5101, 2013.

Zou, Hui and Hastie, Trevor. Regularization and variable
selection via the elastic net. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 67(2):
301–320, 2005.



PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification

6. Appendix A: Convergence Proof
The proofs of Theorem 1, 2 are similar to that in (Lacoste-
Julien et al., 2013). To be self-contained, we provide proofs
in the following.

6.1. Proof for Theorem 1

The dual problem (14) has (generalized) Hessian for i-th
block of variable αi being upper bounded by

∇2
αiG(α) � QiI.

where Qi = ‖xi‖2. Since the active set includes the
most-violating pair (19) that defines the Frank-Wolfe di-
rection αtFW satisfying (18), the update given by solving
the active-set subproblem (21) has

G(αt+1)−G(αt)

≤ γ〈∇αiG(αt),αitFW −αit〉+
Qiγ

2

2
‖αitFW −αit‖2

≤ γ〈∇αiG(αt),αitFW −αit〉+
QiR

2γ2

2

for any γ ∈ [0, 1], where ‖αtFW − αit‖2 ≤ R2 = 4C2

since both αtFW , αit lie within the domain (16). Taking
expectation w.r.t. i (uniformly sampled from [N ]), we have

E[G(αt+1)]−G(αt)

≤ γ

N
〈∇αG(αt),αtFW −αt〉+

QR2γ2

2N

(31)

where Q =
∑N
i=1Qi. Then denote α∗ as an optimal solu-

tion, by convexity and the definition of Frank-Wolfe direc-
tion we have

〈∇αG(αt),αtFW −αt〉 ≤ 〈∇αG(αt),α∗ −αt〉
≤ G∗ −G(αt),

where G∗ := G(α∗). Together with (31), we have

∆Gt+1 −∆Gt ≤ −γ
N

∆Gt +
QR2γ2

2N
(32)

for any γ ∈ [0, 1], where ∆Gt := E[G(αt)] − G∗. By
choosing γ = 2N

t+2N , the recurrence (32) leads to the result

∆Gt ≤ 2(QR2 + ∆G0)

t/N + 2
,

which can be verified via induction as in the proof of
Lemma C.2 of (Lacoste-Julien et al., 2013).

4http://research.microsoft.com/en-
us/um/people/manik/code/SLEEC/download.html

6.2. Proof for Theorem 2

The approximation criteria (24) searches active label from
one out of ν partitions of [K]. Suppose in the t-th itera-
tion, a subset not containing most-violating label (20) was
chosen, we have

G(αt+1)−G(αt) ≤ 0 (33)

and suppose a subset containing most-violating label was
chosen, we have

G(αt+1)−G(αt)

≤ γ〈∇αiG(αt),αitFW −αit〉+
QiR

2γ2

2
+ γεd

(34)

where εd is the error caused by sampling (25). Since (33),
(34) happen with probabilities 1−1/ν and 1/ν respectively,
we have expected descent amount

E[G(αt+1)−G∗]− (G(αt)−G∗)

≤ γ

Nν
〈∇αG(αt),αtFW −αt〉+

QR2γ2

2Nν
+
γεd
ν

≤ −γ
Nν

(G(αt)−G∗) +
QR2γ2

2Nν
+
γεd
ν
.

(35)

following the same reasoning of (31) and (32). For

εd ≤
QR2γ

2N
,

we have

E[G(αt+1)−G∗]− (G(αt)−G∗)

≤ −γ
Nν

(G(αt)−G∗) +
QR2γ2

Nν
.

(36)

Therefore, by choosing γ = 2
t/(Nν)+2 , we have

∆Gt ≤ 4(QR2 + ∆G0)

t/(Nν) + 2

for t satisfying

0 ≤ t ≤ νQR2/εd.
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7. Appendix B: Additional Statistics

Table 4. Default parameter setting used in SLEEC’s code. One
might need to refer to their webpage 6for explanation of parame-
ters.

num learners num clusters SVP neigh
5 5 50

out Dim w thresh sp thresh
75 0.75 0.5

cost NNtest normalize
0.1 20 1

Table 5. Statistics for heldout and test data set

Data Sets Train Size Heldout Size Test Size.
LSHTC-wiki 2355436 5000 5000

EUR-Lex 15643 1738 1933
bibtex 5991 665 739

RCV1-regions 20835 2314 5000
LSHTC 83805 5000 5000
aloi.bin 90000 10000 8000
Dmoz 310562 34506 38340

ImageNet 1125264 10000 126140
sector 7793 865 961

8. Appendix C: Bounds for Approximation
(25)

Let σ2
ki be the variance of C̄k(Di). We have

σ2
ki ≤ σ̂2

ki =
1

d̃i
‖xi‖1‖xi‖∞R2

w ≤
di

d̃i
‖xi‖2∞R2

w (37)

, where R2
w is an upper bound on

∑
j:xij 6=0(wt

kj)
2.

For ε = O(‖xi‖1Rw), Bernstein-Type inequality gives

Pr[|C̄k(Di)− 〈wt
k,xi〉| > ε] ≤ e

− ε2

2σ̂2
ki (38)

Suppose we want to approximate 〈wt
k,xi〉 within εd for

all k ∈ [K] with failure probability at most δ. Combining
(37), (38) and using union bound, we only need

di

d̃i
.

ε2d
log(Kδ )‖xi‖2∞R2

w

(39)

Also, look at the dual objective function in (14), initially
we have G(α) = G(0) = 0. Since our method is dual-
descent, we have G(αt) ≤ 0, thus

1

2

K∑
k=1

‖wt
k‖22 ≤ −

N∑
i=1

eTi α
i ≤ CN (40)

where the last inequality follows from (16).

6http://research.microsoft.com/en-
us/um/people/manik/code/SLEEC/download.html


