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Multiple Sequence Alignment

Sequence Alignment: An alignment a is a path of transitions t1,..,tK between
states (i , j) ∈ [`1] ∈ [`2] of reads on two sequences x1, x2.
The sequence alignment problem can be expressed as

a∗ = arg min
a

d(a; x1, x2) :=
∑
t∈a

d(t; x1, x2).

where transition t ∈ {matching, insertion, deletion}.
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Multiple Sequence Alignment

Multiple Sequence Alignment (MSA):

(y∗, a∗1 , ..., a
∗
N) = argmin

y,a1,...,aN

N∑
n=1

d(an; xn, y). (1)

aims to find a latent consensus sequence y∗ and alignments a1, ..., aN jointly.
(1) is called Star Alignment in distinction to Sum-of-Pairs objective, both of which
are NP-hard.
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Motif Discovery

Motif Discovery (MD):

(y∗1 , ..., y
∗
K ; a∗1 , ..., a

∗
N) := argmin

y,a

N∑
n=1

d(an; xn, y1, ..., yK ) (2)

is a further generalization of MSA, where multiple motifs y1,...,yK can be aligned
to segments of sequence. Typically, an insertion is only considered as gap between
motifs (not inside motif).
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Existing Approaches

HMM: Model with (Profile) HMM and estimate via EM-style algorithm.

Progressive Method: Reduce MSA to a series of Pairwise SA.

Iterative, hill-climbing methods.
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Convex Relaxation via Atomic Constraints: MSA

M = `× L× |Σ̂|.
An: all possible alignments.

P: any ”folding screen” p of single consensus z .
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Convex Relaxation via Atomic Constraints: MD

MD uses representation similar to MSA, with 3rd dimension |Σ̂| replaced by the
number of all possible motifs

∑Lmax
L=Lmin

|Σ|L.

Replace W ∈ Conv(P) with the atomic-norm constraint ΩPC (W) ≤ K, where
ΩPC (W) := inf{q ≥ 0 : W ∈ q ∗ Conv(P)}.
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Greedy Direction Method of Multiplier (GDMM)

To decouple the two atomic constraints of the convex relaxation, we
minimize Augmented Lagrangian (AL) of

min
W1,W2∈MR

〈D,W1〉+
ρ

2
‖W1 −W2‖2

s.t. W1 ∈ Conv(A)

W2 ∈ Conv(P)

W1 = W2.

w.r.t. W1, W2 separately, followed by a Dual Ascent step

Y (t+1) = Y (t) + η
(
W

(t+1)
1 −W

(t+1)
2

)
,

where Y is dual variable corresponding to constraint W1 = W2.

11 / 16



Greedy Direction Method of Multiplier (GDMM)

Minimizing Augmented Lagrangian

L(W1,W2,Y ) := 〈D,W1〉+ 〈Y ,W1 −W2〉+
ρ

2
‖W1 −W2‖2

exactly w.r.t. W1 or W2 is hard, due to complex atomic constraint.

We propose a GDMM algorithm, which minimizes (W1,W2) via only a
(non-drop) step of Away-step Frank-Wolfe for each Dual Ascent step.

The Frank-Wolfe step only requires computation of the greedy atoms:

W FW
1 := argmin

W1∈Conv(A)

〈D + ρ(W1 −W2) + Y ,W1〉

W FW
2 := argmax

W2∈Conv(P)

〈ρ(W1 −W2) + Y ,W2〉

using local linear approximation, which can be solved via Smith-Waterman
alignment and Viterbi Algorithm respectively.

We show that GDMM converges to ε suboptimality in O(1/ε) iterations.
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Experimental Result: Multiple Sequence Alignment

Settings Synthetic Datasets Realistic Datasets
Solvers\Data Syn01 Syn02 Syn03 Syn04 sDicF sHairpin

N=10, L=30 N=30, L=50 N=30, L=50 N=30, L=50 N=6, L=15 N=20, L=30
(3, 2, 4) (12, 11, 7) (19, 18, 9) (24, 24, 19) (3, 4, 16) (9, 7, 44)

ClustalOmega 311 / 47 3295 / 126 6671 / 274 5946 / 240 119 / 27 1225 / 77
Kalign 88 / 10 1440 / 51 2003 / 71 2612 / 93 104 / 24 874 / 54

T-COFFEE 99 / 12 1031 / 36 1492 / 53 2120 / 75 104 / 24 868 / 53
MAFFET 87 / 10 1196 / 42 1856 / 66 2843 / 103 103 / 27 874 / 54
MUSCLE 87 / 10 1060 / 37 1649 / 59 2311 / 83 105 / 24 874 / 54

ConvexMSA 79 / 9 863 / 30 1285 / 45 1903 / 67 98 / 23 853 / 50
Ground Truth 79 / 9 863 / 30 1310 / 46 1903 / 67 103 / 23 974 / 60

Synthetic data use TKF1 model (Thorne et al., 1991) to generate
insertion/deletion (with some Poisson rate).

(I,D,M)=(#insertions,#deletions,#mismatches).

We report both Sum-of-Pairs / Star-Alignment scores.
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Experimental Result: Motif Discovery

Dechier is a Motif Discovery problem with perfect matched solution.

Each character of a well-known saying vevi vidi vici (I came, I saw, I conquered) is
encoded into a binary string and concatenated with others.

We compare our convex relaxation approach to the current most-widely-used algorithm
Multiple EM for Motif Elicitation (MEME) for MD.
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Conclusion

Multiple Sequence Alignment (MSA) and Motif Discovery (MD) are
two fundamental and NP-hard tasks in Bioinformatics.

We propose a convex relaxation approach to MSA & MD based on
the concept of Atomic Norm, and a GDMM algorithm that can find
its solution in practice.

Experiments on small-scale MSA, MD problems demonstrate superioty
of the convex approach. Scalability is one of our on-going works.
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