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@ Sequence Alignment: An alignment a is a path of transitions t1,..,tx between
states (/,j) € [¢1] € [€2] of reads on two sequences X1, X2.
The sequence alignment problem can be expressed as

a* = argmin d(a;x1,x) = Zd(t;xl,X2).

tca

where transition t € {matching, insertion, deletion}.
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@ Multiple Sequence Alignment (MSA):
N

(v*,al,...,ay) = argmin Zd(a,,;x,,,y). (1)

Yia,enan

aims to find a latent consensus sequence y* and alignments aj, ..., ay jointly.
(1) is called Star Alignment in distinction to Sum-of-Pairs objective, both of which
are NP-hard.
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@ Motif Discovery (MD):

1y yK; @1, ey an) = argmin Z d(an; Xn, Y1, s Y) (2)
y.a n=1

is a further generalization of MSA, where multiple motifs yi,...,yx can be aligned

to segments of sequence. Typically, an insertion is only considered as gap between

motifs (not inside motif).



Existing Approaches
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@ HMM: Model with (Profile) HMM and estimate via EM-style algorithm.
@ Progressive Method: Reduce MSA to a series of Pairwise SA.

@ lterative, hill-climbing methods.
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Convex Relaxation via Atomic Constraints: MSA
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o M=1Ix1Lxl%|
e A,: all possible alignments.

@ P: any "folding screen” p of single consensus z.



Convex Relaxation via Atomic Constraints: MD

@ MD uses representation similar to MSA, with 3rd dimension |f| replaced by the

Lmax

number of all possible motifs >, [zt

@ Replace W € Conv(P) with the atomic-norm constraint Q. (W) < K, where
Qp. (W) :=inf{q > 0: W € q=* Conv(P)}.
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Greedy Direction Method of Multiplier (GDMM)

@ To decouple the two atomic constraints of the convex relaxation, we
minimize Augmented Lagrangian (AL) of

min (D, Wh) + 2| Wi — WAl

Wi, Woe Mp

s.t. Wi € Conv(A)
W, € Conv(P)
Wy = Wh.

w.r.t. Wy, W, separately, followed by a Dual Ascent step
YD) =y () 4 <W1(t+1) _ W2(t+1)>

where Y is dual variable corresponding to constraint Wy = W,.
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Greedy Direction Method of Multiplier (GDMM)

@ Minimizing Augmented Lagrangian

L(Wi, Wa, Y) = (D, Wy) + (Y, Wy — W) + §||W1 — Wh?

exactly w.r.t. Wy or W, is hard, due to complex atomic constraint.

@ We propose a GDMM algorithm, which minimizes (W, W) via only a

(non-drop) step of Away-step Frank-Wolfe for each Dual Ascent step.

@ The Frank-Wolfe step only requires computation of the greedy atoms:

WY = argmin (D + p(Wy — Wh) + Y, W)
Wi € Conv(A)

WSV = argmax (p(Wy — Wh) + Y, Wh)
W€ Conv(P)

using local linear approximation, which can be solved via Smith-Waterman
alignment and Viterbi Algorithm respectively.

@ We show that GDMM converges to e suboptimality in O(1/¢) iterations.
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Experimental Result: Multiple Sequence Alignment

Settings Synthetic Datasets Realistic Datasets

Solvers\ Data Syn01 Syn02 Syn03 Syn04 sDicF sHairpin
N=10, L=30 N=30, L=50 N=30, L=50 N=30, L=50 N=6, L=15 N=20, L=30

(3,2, 4) (12, 11, 7) (19, 18, 9) (24, 24, 19) (3, 4, 16) (9, 7, 44)
ClustalOmega 311 / 47 3295 / 126 6671 / 274 5946 / 240 119 / 27 1225 / 77
Kalign 88 /10 1440 / 51 2003 / 71 2612 / 93 104 / 24 874 / 54
T-COFFEE 99 / 12 1031 / 36 1492 / 53 2120 / 75 104 / 24 868 / 53
MAFFET 87 /10 1196 / 42 1856 / 66 2843 / 103 103 / 27 874 / 54
MUSCLE 87 /10 1060 / 37 1649 / 59 2311 / 83 105 / 24 874 / 54
ConvexMSA 79/9 863 / 30 1285 / 45 1903 / 67 98 / 23 853 / 50
Ground Truth 79/ 9 863 / 30 1310 / 46 1903 / 67 103/ 23 974 | 60

@ Synthetic data use TKF1 model (Thorne et al., 1991) to generate
insertion /deletion (with some Poisson rate).

o (I,D,M)=(#insertions,#deletions,#mismatches).

e We report both Sum-of-Pairs / Star-Alignment scores.
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Experimental Result: Motif Discove

Text Encoded Case 1: L., =4, Ly =6

010110000101001110001011111101011000100001000010
11111101011000100000110010
ConvexMD sol-1: matching rate 100.0%

010110 000101 001110 0010 010110 0010 000100 0010
e S e S St e S e’ S’

e n i i d i
010110 0010 0010
o
g i c i
ConvexMD sol-2: matching rate 100.0%
0101 1000 0101 0101 1000 1000 0010
N M N N e e N e N e e e e

2 1 3 4 5 7
0101 1000 1000 0010
o

MEME sol: matching rate 75.7%
0101 100001 01 0O11 10001 0 0 1011 000 100001 0 0001 0
e e i N e
3 1 6 1 2 3 6
010110 0000110010
N

1 2 5 4

@ Dechier is a Motif Discovery problem with perfect matched solution.

@ Each character of a well-known saying vevi vidi vici (I came, | saw, | conquered) is
encoded into a binary string and concatenated with others.

@ We compare our convex relaxation approach to the current most-widely-used algorithm
Multiple EM for Motif Elicitation (MEME) for MD.



Conclusion

@ Multiple Sequence Alignment (MSA) and Motif Discovery (MD) are
two fundamental and NP-hard tasks in Bioinformatics.

@ We propose a convex relaxation approach to MSA & MD based on
the concept of Atomic Norm, and a GDMM algorithm that can find
its solution in practice.

@ Experiments on small-scale MSA, MD problems demonstrate superioty
of the convex approach. Scalability is one of our on-going works.
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