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Abstract

Multiple Sequence Alignment and Motif Discov-
ery, known as NP-hard problems, are two fun-
damental tasks in Bioinformatics. Existing ap-
proaches to these two problems are based on ei-
ther local search methods such as Expectation
Maximization (EM), Gibbs Sampling or greedy
heuristic methods. In this work, we develop
a convex relaxation approach to both problems
based on the recent concept of atomic norm and
develop a new algorithm, termed Greedy Direc-
tion Method of Multiplier, for solving the convex
relaxation with two convex atomic constraints.
Experiments show that our convex relaxation
approach produces solutions of higher quality
than standard tools widely-used in Bioinformat-
ics community on Multiple Sequence Alignment
and Motif Discovery problems.

1. Introduction
Multiple Sequence Alignment (MSA) Given an alpha-
bet Σ, let Σ̂ = Σ ∪ {∗,#} be its extension with start-end
symbols and Σ# the extension with end symbol only. An
alignment between two sequences x1 ∈ Σ̂`1 , x2 ∈ Σ̂`2 of
length `1, `2 can be defined as a path of state transitions,
where each state (i, j) ∈ S = [`1] × [`2] is a pair of read
positions on x1, x2, and the set of possible state transitions
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T ⊂ S × S are

T I = {((i, j), (i+ 1, j)) | i ∈ [`1 − 1], j ∈ [`2]}
T D = {((i, j), (i, j + 1)) | i ∈ [`1], j ∈ [`2 − 1]}
T M = {((i, j), (i+ 1, j + 1)) | i ∈ [`1 − 1], j ∈ [`2 − 1]},

termed as insertion, deletion, and matching transition re-
spectively. A collection of transitions {tk}Kk=1 is a path
iff any state s involved has exactly one incoming transi-
tion and one outgoing transition, except a begin state sB
of only outgoing transition and an end state sE of only in-
coming transition. An alignment a is a path with begin
state sB = (1, 1) and end state sE = (`1, `2). To evaluate
quality of an alignment, a scoring function of form

d(t;x1, x2) =

 dI , t ∈ T I
dD , t ∈ T D
dM (x1[i+ 1], x2[j + 1]) , t ∈ T M

is given that specifies the penalty given for each insertion
dI , deletion dD and mismatch dM (x1[i + 1], x2[j + 1])
transition where dM (a, b) = 0 if a = b. The cost of an
alignment a is then defined by

d(a;x1, x2) :=
∑
t∈a

d(t;x1, x2).

The problem of finding the best alignment a∗ =
argmina d(a;x1, x2) between two sequences, known as
Pairwise Alignment, can be solved within the time com-
plexity of O(`1`2) via the Needleman-Wunsch algorithm
(or the Smith-Waterman algorithm for the scenario of find-
ing local alignments).

Given a collection of sequences D = {xn}Nn=1 of dif-
ferent lengths {`n}Nn=1 with total length ` =

∑N
n=1 `n,

the problem of Multiple Sequence Alignment can be de-
fined in a number of ways. For this work, we consider
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the formulation named MSA with Consensus, in which one
aims at finding a consensus sequence y and its alignments
a = (an)Nn=1 w.r.t. each of N sequences jointly. Formally,

(y∗, a∗) = argmin
y,a

N∑
n=1

d(an;xn, y), (1)

where optimal solution y∗ is also known as Steiner string
with d(.) being edit distance. The above objective (1) is
also known as the Star Alignment (in distinction to the Sum-
of-Pairs objective, for which a convex relaxation approach
has been considered in (Alayrac et al., 2015)). However,
Star Alignment is proved to be NP-hard just as any other
formulation of MSA (Elias, 2003). When using Profile-
HMM to model a collection of sequences, the Maximum-
Likelihood estimation gives an objective similar to (1),
where y is replaced with parameters π that specifies a dis-
tribution of consensus sequence, known as Profile (Durbin
et al., 1998). The standard method for estimating Profile-
HMM from un-aligned sequences is the Baum-Welch (or
Expectation Maximization (EM)) algorithm that maximizes
log-likelihood w.r.t. the alignments a and profile π al-
ternately. However, it has been shown that this approach
barely outperforms (heuristic) progressive algorithm as im-
plemented in, for example, Clustal-W (Notredame, 2002;
Karplus & Hu, 2001).

Motif Discovery (MD) The Motif Discovery problem
can be interpreted as a generalization of MSA that aims
to find K consensus motifs y1, y2, ...,yK jointly that are
aligned to different segments of sequences {xn}Nn=1, so the
characters being matched are as many as possible. If there
is a solution s.t. every character is matched, the problem
can be also interpreted as a decipher problem where se-
quences {xn}Nn=1 are the encoded text and {yk}Kk=1 is the
unknown coding book to find. Formally, the MD problem
aims to solve

(y∗, a∗) := argmin
y,a

N∑
n=1

d(an;xn, y1, ..., yK) (2)

where y = (yk)k∈[K] are K motifs to estimate and a =
(an)n∈[N ] are alignments that consider the set of possible
transitions Tn = T Mn ∪T Sn for each sequence to be aligned

T Mn =

((i, j, k), (i+ 1, j + 1, k))

∣∣∣∣∣∣
i ∈ [`n − 1],
j ∈ [Lk − 1],
k ∈ [K]


T Sn =

{
((i, Lk, k), (i+ 1, 1, k′))

∣∣∣∣ i ∈ [`n − 1],
k, k′ ∈ [K] ∪ {U}

}
,

termed as the match and switch transition respectively.
Note that the MD problem, in its simplest form, does not
consider insertion-deletion noise presumably due to its in-
trinsic difficulty, and therefore, finding alignment a be-
comes equivalent to finding the start positions of motifs

on the data sequences (Das & Dai, 2007). Besides the K
motifs, an additional dummy motif yU of length LU = 1 is
added to align with any segment that does not match any
motif under an unmatch penalty dU . For any transition
t = ((i, j, k), (i′, j′, k′)) ∈ Tn, the cost function is defined
as

d(t;xn, y1, ..., yK) =

{
dU , k′ = U
dM (xn[i′], yk′ [j

′]), o.w.

where dM (a, b) = 0 if a = b. Among many Motif Dis-
covery algorithms, the probabilistic modelling approaches
have been the most widely-used (Bailey et al., 2006; Sid-
dharthan et al., 2005; Lawrence et al., 1993), where an ob-
jective similar to (2) is derived from maximum likelihood
or Bayesian criteria with (y, a) replaced by their proba-
bilistic counterparts. However, the algorithms being used
for fitting those models are based on local-search methods
such as EM (Bailey et al., 2006) or Gibbs sampling (Sid-
dharthan et al., 2005; Lawrence et al., 1993) that does not
find solution of guaranteed quality.

In this work, we develop convex relaxation for the MSA
and MD problem based on recent concept of atomic norm
and convex atomic constraint. The problem of minimizing
convex, smooth function subject to a feasible domain being
convex hull of atomic set has been widely studied in the re-
cent years (Jaggi, 2013; Tewari et al., 2011), where one can
exploit the specific structure of atomic set S to find search
direction efficiently (Jaggi, 2013). However, the objective
developed in this work is constrained by the intersection
of two convex hulls of atomic sets, which makes standard
algorithms for convex atomic domain not directly applica-
ble to our case. In section 3, we propose a new algorith-
mic framework that combines Augmented Lagrangian with
a variant of Frank-Wolfe (Lacoste-Julien & Jaggi, 2015) to
efficiently solve the convex relaxation of MSA/MD prob-
lems with convergence guarantee.

2. Problem Formulation
2.1. A Convex Relaxation for Multiple Sequence

Alignment (MSA)

To define a convex relaxation of (1), we define the ambi-
ent space that can be used to represent any consensus se-
quence and its alignment w.r.t. the N sequences 1. Since
the consensus sequence is unknown, we will consider L as
the maximum possible length of it, and use (i, q) ∈ Sn =
[`n] × Q to represent the state of alignment between n-
th sequence and y, where q = (j, c) ∈ Q = [L] × Σ̂
is a read on the j-th position of y with any candidate
symbol c. The states Sn we are considering can be il-
lustrated as a `n × L × |Σ̂| cube in Figure 1. Denoting
Q−1 = Q \ {(j, c)|j = L− 1}, the set of valid transitions
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Figure 1. Illustration of W ∈ M for Multiple Sequence Align-
ment as an ` × L × |Σ̂| cube, where xn is data sequence, z is
consensus sequence, an is the alignment of xn to z, and p is a
consensus atom that has support within z when projected onto the
upper surface of the cube.

Tn = T In ∪ T Dn ∪ T Mn ⊂ Sn × Sn are defined as

T In = {((i, q), (i+ 1, q)) | i ∈ [`n − 1], q ∈ Q}

T Dn =

{
((i, q), (i, q′))

∣∣∣∣ q = (j, c) ∈ Q−1 : c 6= #
q′ = (j + 1, c′),∀c′ ∈ Σ#

}
T Mn =

{
((i, q), (i+ 1, q′))

∣∣∣∣ q = (j, c) ∈ Q−1 : c 6= #
q′ = (j + 1, c′),∀c′ ∈ Σ#

}
.

where the mismatch/match transition T Mn and the deletion
transitions T Dn going from j to j+1-th position of consen-
sus sequence can read any symbol c ∈ Σ# at the new posi-
tion. An alignment is then defined as a path inside the cube
illustrated in Figure 1, with begin state sB = (1, (1, ∗)) and
end state sE ∈ SEn = {(`n, (j,#)) | j ∈ [L]}. Note one
can now evaluate the cost of a transition by:

d(t;xn) =

 dI , t ∈ T In
dD , t ∈ T Dn
dM (xn[i+ 1], c′(t)) , t ∈ T Mn .

where c′(t) denotes the symbol of consensus sequence used
by the destination state of t.

Then we define the ambient space to be M = M1 ×
M2... × MN where Mn := {0, 1}|Tn|. Let a(n, t) ∈
{0, 1} be the indicator of whether transition t is used in
the alignment of n-th sequence, and an := (a(n, t))t∈Tn ,
Dn := (d(t, xn))t∈Tn . The cost of an alignment an can be
written as

〈Dn,an〉 =
∑
t∈Tn

d(t;xn)a(n, t) (3)

and the constraint for Wn ∈ Mn to be a valid alignment
can be expressed by Wn ∈ An, where An denotes the set
of all valid alignments between sequence xn to another se-
quence. Note Wn ∈ An does not constrain x1,...,xN to
align to the same consensus sequence.

To impose the consensus constraint, denote TQ ⊂ Q × Q
as the set of valid transitions on Q of the form ((j, c), (j +
1, c′)) andMQ = {0, 1}|TQ| as the ambient space of con-
sensus sequence. We can then define consensus sequence
z ∈ MQ as indicator vector that has value 1 on a path
of transitions beginning with qB = (1, ∗), ending with
qE ∈ QE = {(j,#)|j ∈ [L]}, and value 0 on all other
entries, as illustrated on top surface of the cube in Figure 1.
Let Z ⊂ TQ be the set of all possible consensus sequences.
For all z ∈ Z , we define

Pz = {W ∈M | supp(projMQ
(W )) ⊆ z} (4)

as the set of any W with support in z when projected to
MQ, and P =

⋃
z∈Z Pz as the set of all W with only

one supporting consensus sequence. Then the Multiple Se-
quence Alignment problem can be equivalently formulated
as

min
W∈M

〈D,W 〉

s.t. Wn ∈ An, n ∈ [N ]

W ∈ P.

(5)

where Dn,t = d(t;xn). One can verify that the feasible set
of (5) exactly profiles the search space of the MSA prob-
lem (1): any W that corresponds to N alignments to one
consensus sequence. To define a convex relaxation of (5),
we relax the integer domain Mn to domain of real values
between 0 and 1:MR := Conv(M) and solve

min
W∈MR

〈D,W 〉

s.t. Wn ∈ Conv(An), n ∈ [N ]

W ∈ Conv(P).

(6)

where Conv(V) denotes the convex hull formed by atoms
a ∈ V . Note the tractability of problem (6) lies in the do-
main Conv(A)

⋂
Conv(P), which is a superset of a more

straightforward relaxation Conv(A
⋂
P). The latter leads

to an NP-hard problem since it always produces an opti-
mal solution of (5) by adding perturbation to D to induce
unique integer solution, which leads to contradiction.

The relaxation (6) is not tight in general. Solution of (6)
could be fractional and lies in the interior of convex hulls.
Fortunately, the structure of (6) permits simple rounding
scheme for transferring any solution of the relaxed prob-
lem (6) to a feasible solution of the combinatorial prob-
lem (5), which we will describe in section 3.3. In our

1We overload several notations, such as S, T ,Q, in different
scenarios as long as their meanings are clear from the context.
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experiment, we found rounding from (6) yields solution
that outperforms standard MSA tools and is sometimes as
good as ground truth. We also observed cases when (6)
yields integer solution W ∗ directly, in which case the solu-
tion W ∗ is also optimal to (5) since any integer solution in
Conv(A)

⋂
Conv(P) must satisfyW ∗ ∈ A andW ∗ ∈ P .

2.2. Convex Relaxation for Motif Discovery (MD)

To define the convex relaxation for (2), let Lm, LM be the
minimum and maximum possible lengths of a motif, and

Y =

(
LM⋃
l=Lm

Σl

)
∪ {yU} (7)

be the set of all possible motifs and let K̄ = |Y \ {yU}|.
We denote Lk as the length of motif yk with LU = 1.
Instead of allowing arbitrary symbol c to be aligned as
in previous section, we specify the symbol being read by
motif index k and position j, denoted as yj [k]. Defining
q ∈ Q = {(j, k) | j ∈ [Lk], k ∈ [K̄] ∪ {U}} as the read
state on the motif, and s = (i, q) ∈ Sn = [`n] × Q as the
state of alignment on the n-th sequence, the set of possible
transitions between states can be defined as Tn = T Mn ∪T Sn
where

T Mn =

((i, q), (i+ 1, q′))

∣∣∣∣∣∣
i ∈ [`n − 1],
q = (j, k), q′ = (j + 1, k)
j ∈ [Lk − 1], k ∈ [K̄]


T Sn =

((i, q), (i+ 1, q′))

∣∣∣∣∣∣
i ∈ [`n − 1]
q = (Lk, k), q′ = (1, k′),
k, k′ ∈ [K̄] ∪ {U}

 .

Suppose each data sequence xn has a start symbol ∗ ap-
pended at position 0 that does not require to be matched.
The alignment of n-th sequence is defined as a path of
transitions from any begin state sB ∈ SB to any end state
sE ∈ SE where

SB = {(0, q) | q = (1, U), }
SE = {(`n, q) | q = (Lk, k), k ∈ [K̄] ∪ {U}},

and each transition t = ((i, (j, k)), (i′, (j′, k′))) ∈ Tn in-
curs a cost given by

d(t;xn) =

{
dU , k′ = U
dM (xn[i′], yj′ [k

′]), o.w.

After the above modification of state and transition sets,
we can define the ambient space M, alignment space A
and cost vector D in the same way of section 2.1 such that
the alignment cost is given by 〈D,W 〉, and the constraint
for Wn being a valid alignment is Wn ∈ An. To constrain
number of motifs learned from sequences, let TQ ⊂ Q ×
Q denotes the transitions (q, q′) on Q that can be induced

from any transition t ∈ T and MQ = {0, 1}|TQ| as the
ambient space for representation of motifs. We can then
define the indicator vector of a motif as zk ∈ M|TQ| that
has value 1 on all transitions (q, q′) involving k-th motif
and value 0 on all other transitions t ∈ TQ. Then let Pk =
{W ∈ M | supp(projMQ

(W )) ⊆ zk} be the group of
W ∈M of support within zk when projected toMQ, and
P =

⋃
k∈[K̄] Pk be the group of W with support within

one motif when projected to MQ. The Motif Discovery
problem (2) can be reformulated as

min
W∈M

〈D,W 〉

s.t. Wn ∈ An, n ∈ [N ]

ΩPC
(W ) = K.

(8)

whereK is the desired number of motifs, and ΩPC
(.) is the

atomic norm defined on the convex hull PC = Conv(P).
Note in the integer domainM, W satisfying ΩPC

(W ) =
K can be written as W =

∑
k∈B pk for some set B of K

distinct motifs and pk ∈ Pk. So any feasible W involves
exactly K motifs and is also a valid alignment (since W ∈
A). Therefore, the feasible domain of (8) exactly reflects
the search space of (2), giving equivalence between the two
problems. The convex relaxation of (8) can be written as

min
W∈MR

〈D,W 〉

s.t. Wn ∈ Conv(An), n ∈ [N ]

ΩPC
(W ) ≤ K,

(9)

which simply replacesM,An by the convex hulls of them.
Note although the ambient spaceMR considers exponen-
tially large number of variables proportional to |Y|, only a
small data-dependent subset Yx will be considered by the
algorithm we will introduce in section 3.

Although (9) in general does not have the same solution
as (8), when (9) has unique solution and there exists a per-
fect solution (coding book) {y∗k}Kk=1 to the Motif Discovery
problem (2) that incurs no unmatch dU or mis-match cost
dM , the relaxation (9) finds solution W ∗ equivalent to the
optimal solution of (2), depicted as the following theorem.

Theorem 1 (Realizable Case). Suppose there ex-
ists a perfect solution {y∗k}Kk=1 to problem (2) with∑
n∈[N ] d(a∗n;xn, y

∗
1 , ..., y

∗
K) = 0 and (9) has a unique

solution W ∗. Then W ∗ is optimal solution to the Motif
Discovery problem (8).

Proof. This follows directly from the fact that 〈D,W ∗〉
cannot have loss lower than 0 but the relaxation (9) should
achieve a loss not higher than that of (8), so 〈D,W ∗〉 = 0
and by uniqueness W ∗ is the optimal solution of (8).
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Algorithm 1 Greedy Direction Method of Multiplier
0: Initialize v0 := argminv∈A〈D,v〉, W 0

1 = v0, W 0
2 =

0, Y 0 = 0 and active set B0 = {v0}.
for t = 0, 1, 2, .. do

1: Perform Algorithm 2 on (13) until a non-drop step.
2: Update Lagrangian multipliers via (14).

end for

3. Algorithm
In this section, we propose an algorithmic framework,
termed Greedy Direction Method of Multiplier (GDMM),
for solving problem of form

min
W∈MR

〈D,W 〉

s.t. W ∈ Conv(A)

W ∈ Conv(G),

(10)

that subsumes both the convex relaxation of Multiple Se-
quence Alignment (6) and Motif Discovery (9). We will
first state the general algorithm in section 3.1, and in sec-
tion 3.2 we describe ways to realize the Linear Minimiza-
tion Oracles (LMO) for atomic sets An, G in (6) and (9)
respectively.

3.1. Greedy Direction Method of Multiplier

Note problem of form (10) is easy to solve when there is
only alignment constraints Wn ∈ Conv(An) or only con-
sensus constraint W ∈ Conv(G). In the former case, the
problem can be solved via a Dynamic Programming (DP)
method similar to the Smith-Waterman algorithm (Smith &
Waterman, 1981), while in the latter case, a DP method
(introduced in section 3.2) similar to the Viterbi algorithm
can find solution directly. To decouple the two atomic con-
straints in (10), we solve the equivalent problem

min
W1,W2∈MR

〈D,W1〉+
ρ

2
‖W1 −W2‖2

s.t. W1 ∈ Conv(A)

W2 ∈ Conv(G)

W1 = W2

(11)

via an Augmented Lagrangian (AL) method. Define the AL
function L(W1,W2, Y ) as

〈D,W1〉+ 〈Y,W1 −W2〉+
ρ

2
‖W1 −W2‖2 (12)

where Y is the Lagrangian Multipliers. At each iteration,
the GDMM algorithm performs few iterates of Away-Steps
Frank-Wolfe (AFW) algorithm on the AL subproblem

min
(W1,W2)∈Conv(A)×Conv(G)

L(W1,W2, Y
(t)), (13)

Algorithm 2 Away-Steps Frank-Wolfe (one non-drop step)
for s = 0, 1, 2, ... do

1: vFW = argmin
v∈A×G

〈∇L,v〉 ; dFW = vFW −W (t,s).

2: vA = argmax
v∈B(t,s)

〈∇L,v〉; dA = W (t,s) − vA.

if 〈∇L,dFW 〉 ≤ 〈∇L,dA〉 then
3: d := dFW , γmax := 1,

B(t,s+ 1
2 ) := B(t,s) ∪ {vFW }

else
4: d := dA, γmax := β

(t,s)
vA /(1− β(t,s)

vA ).
end if

5: γ∗ := argmin
γ∈[0,γmax]

L
(

(W
(t,s)
1 ,W

(t,s)
2 ) + γd, Y (t)

)
.

6: (W
(t,s+1)
1 ,W

(t,s+1)
2 ) := (W

(t,s)
1 ,W

(t,s)
2 ) + γ∗d.

7: B(t,s+1) := B(t,s+ 1
2 ) \ {v | β(t,s)

v = 0}.
Break if γ∗ < γmax.

end for

followed by the update of Lagrangian Multipliers

Y (t+1) = Y (t) + η
(
W

(t+1)
1 −W (t+1)

2

)
(14)

where 0 < η ≤ 1 is a constant step size.

AFW is a variant of Frank-Wolfe method that achieves lin-
ear convergence rate on problem of form (12) (Lacoste-
Julien & Jaggi, 2015). A Frank-Wolfe (FW) method each
iteration moves towards an atom obtained by the Linear
Minimization Oracle (LMO)

vFW ∈ argmin
v∈Conv(A)×Conv(G)

〈∇L(W1,W2, Y
(t)),v〉.

(15)
And different to vanilla FW method, the AFW algorithm
maintains an active set B of atoms with non-zero coeffi-
cients {βv}v∈B explicitly, so for any iterate (t, s) the vari-
able (W1,W2) of interest can be expressed as

(W
(t,s)
1 ,W

(t,s)
2 ) =

∑
v∈B(t,s)

β(t,s)
v v, (16)

and the AFW algorithm performs an away step (step 2, 4
of Algorithm 2) whenever ”moving away” from an atom
a ∈ B leads to more progress than moving towards atom
vFW in terms of the linear approximation. We sketch the
AFW algorithm in Algorithm (2). Note the LMO (15) de-
composes into subproblems

v
(1,n)
FW := argmin

W1,n∈Conv(An)

〈∇W1,nL,W1,n〉,∀n ∈ [N ]

(17)

v
(2)
FW := argmin

W2∈Conv(G)

〈∇W2L,W2〉. (18)

In section 3.2, we will discuss how to efficiently compute
(17), (18) for MSA (6) and MD (9) problem.
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Algorithm 3 Extended Smith Waterman Algorithm (ESW)
input : G := −∇W1,nL(.) , Tn.
output : v(1,n)

FW satisfying (17).
Initialize R(s) = 0, s ∈ SB .
for s′ ∈ S \ SB in a topological order w.r.t. Tn do
R(s′) := max(s,s′)∈Tn R(s) +G((s, s′)).
S(s′) ∈ argmaxs:(s,s′)∈Tn R(s) +G((s, s′)).

end for
Let sE ∈ argmaxs∈SE R(s).
Find path a by traceback from sE to sB ∈ SB via S(.).
vFW := indicator vector of path a (in domainMn).

Note if solving (13) exactly, Algorithm 1 is equivalent to
standard Augmented Lagrangian Method, which however
is prohibitively expensive. As one technical contribution of
this work, we show in the following theorem that it suffices
to perform one ”non-drop step” of AFW to ensure conver-
gence of Algorithm 1 to optimum with a O(1/t)-type rate,
where a non-drop step refers to a step that has γ∗ < γmax.
Since any step with γ∗ = γmax will result in removal of
atom from the active set B, the number of non-drop step
is at least half of the total number of AFW steps (Lacoste-
Julien & Jaggi, 2015). Then the number of AFW steps is
at most 2t for t GDMM iterations. Note that linear conver-
gence behavior of AFW plays a crucial role in the conver-
gence analysis of GDMM—a vanilla Frank-Wolfe method
would not be sufficient to obtain the following result.

Theorem 2 (Convergence of GDMM). Let d(Y ) =
minW1,W2 L(W1,W2, Y ) be the dual objective of
(12) and define ∆t

d := d∗ − d(Y t) and ∆t
p :=

L(W t+1
1 ,W t+1

2 , Y t) − d(Y t) as the dual and primal sub-
optimality. Then the iterates {(W t

1 ,W
t
2 , Y

t)}∞t=1 produced
by Algorithm 1 has

∆t
p + ∆t

d ≤
ω

t

with ω = 4(1 + 1
κ ) max

(
∆0
p + ∆0

d, 2R
2
Y /ρ

)
, where κ is

a constant depending on the smoothness and (generalized)
strong convexity constant of (12), pyramidal width of poly-
hedral domain Conv(A) × Conv(G). RY is an upper
bound on the distance of dual iterate Y t to the optimal so-
lution set of d(Y ).

Note in Theorem (2), the constant κ depends on quantities
such as pyramidal width of Conv(A)×Conv(G) and gen-
eralized strong convexity constant of (12), whose relation-
ships to input dimensions N , T are still research issues. In
practice, we observe that performing AFW on W1, W2 in a
sequential manner gives faster convergence than perform-
ing AFW on (W1,W2) jointly. The sequential approach is
however more difficult for analysis, and is only considered
as heuristics in our implementation.

Algorithm 4 Adapted Viterbi Algorithm for MSA
input : G = −∇W2L(.).
output : v(2)

FW satisfying (18).
GQ(q, q′) =

∑
t=((i,q),(i′,q′))[G(t)]+, ∀(q, q′) ∈ TQ.

GQ(q) =
∑
t=((i,q),(i′,q))[G(t)]+, , ∀q ∈ Q.

R(qB) = 0.
for q′ ∈ Q \ {qB} in a topological order w.r.t. TQ do
R(q′) := GQ(q′) + max(q,q′)∈TQ R(q) +GQ(q, q′).
S(q′) := argmax(q,q′)∈TQ R(q) +GQ(q, q′).

end for
Let qE ∈ argmaxq∈QE

R(q).
Find path y by traceback from qE to qB ∈ QB via S(.).
vFW := indicator vector of y (in domainMQ).

3.2. Linear Minimization Oracle (LMO)

Alignment Subproblem (17) Firstly, we give an exten-
sion of Smith-Waterman algorithm for the LMO subprob-
lem (17) for MSA formulation, as shown in Algorithm 3. It
essentially performs dynamic programming following the
topological ordering given by the transition set Tn of n-th
sequence.

Note for MD problem, the set of possible transitions Tn is
exponentially large due to consideration of all possible mo-
tifs Y . However, to find the minimizer of LMO, we only
need to consider a much smaller subset. Note the Aug-
mented Lagrangian (12) has gradient of the form

G := −∇W1nL(.) = −Dn − ρPn (19)

where Dn gives same cost for different motifs of the same
character at the same position, and Pn = W1n −W2n +
Yn/ρ has non-zero entries only on motif y that ever in an
alignment returned by the LMO. Then suppose there are k
atoms ever returned by the LMO. We can perform a k-best
version of Algorithm 3 with a transition set Tn of same size
to MSA, which records the k-best solutions of each state
s in R(s) and S(s) for computing the k-best solutions of
other states s′, so one can explicitly compare the k paths
with non-zero entries in Pn with other paths at any state s.

Consensus Subproblem (18) The LMO subproblem
(18), in the MSA case, has decomposition

max
p∈P

〈G,p〉 = max
z∈Z

max
p∈Pz

〈G,p〉

= max
z∈Z

∑
q:z(q)=1

GQ(q) +
∑

(q,q′):z(q,q′)=1

GQ(q, q′)

where Pz is the set of all W ∈ M supported only by con-
sensus sequence z, and GQ(q), G(q, q′) are defined at step
2, 3 of Algorithm 4. The second equality is given by the
minimization w.r.t. p ∈ Pz , which simply set p(t) = 1
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for G(t) > 0 and p(t) = 0 otherwise. Then the maximiza-
tion w.r.t. z can be done by an adapted Viterbi algorithm
(Algorithm 4).

On the other hand, in MD, the constraint Conv(G) :=
{W2 ∈ MR | ΩP(W2) ≤ K} is the convex hull of atomic
set {

∑K
k∈B pk | |B| = K,pk ∈ Pk}∪{0}, where pk ∈ Pk

is any vector of single supporting motif yk ∈ Y . Therefore,
the LMO simply finds K distinct motifs of highest score
given by

max
pk∈Pk

〈G,pk〉 =
∑
q∈yk

GQ(q) +
∑

(q,q′)∈yk

GQ(q, q′) (20)

Note in MD, each state q belongs to a single motif, so we
can compute (20) directly for each motif k of non-zero en-
tries in G and pick top-K motifs of highest scores. Note
since G = −∇L(.) = ρ(W1 − W2 + Y/ρ) and each
LMO on subproblem (17) can only generate `/Lm motifs
of nonzero entries in G, the number of motifs of non-zero
score is bounded by 2(`/Lm)t, where ` is the total length
of data sequences and t is the number of GDMM iterations.

3.3. Rounding Scheme

Note for any GDMM iteration t, W t
2 can be expressed as a

convex combination of atoms based on the active atom set
maintained by the AFW algorithm

W t
2 =

∑
g∈Bt

βgg (21)

In MSA, each atom g belongs to a possible consensus se-
quence Pz , and thus by randomly pick an atom g from ac-
tive set Bt with probability βg , we can obtain an consen-
sus sequence z, and since pairwise alignment can be easily
achieved via SW algorithm, we can construct an integer so-
lution based on z that is guaranteed a feasible solution to
the original MSA problem.

In MD, by applying the same sampling procedure on (21),
we can obtain an atom g comprises K atoms p1, ...,pK
representing K distinct motifs. Therefore, we can recover
an integer solution to the MD problem by simply finding
the optimal alignment of data sequences to the K motifs.
In practice, we can keep track of the quality given by the
rounded solution during iterates, which can often stop pro-
gram earlier with the same solution.

In both MSA and MD, it is possible to have multiple op-
timal integer solutions which lead to fractional solution of
the convex relaxation. In such case, we add small perturba-
tion to the matrix D to induce an unique solution.

4. Experiments
4.1. Multiple Sequence Alignment (MSA)

Following conventions of the bioinformatics community,
we adopt Sum-of-Pairs Score and Star Alignment Score as
the metrics to assess the quality of resulted alignments.
Given a set of sequences g1, ..., gN in the format of
Global Multiple Sequence Alignment, and a distance func-
tion d(·, ·) defining the penalty assigned to input pairs of
acids, the Sum-of-Pairs score function SSP can be ex-
pressed as the sum of all pairwise penalties over all acid
columns (Durbin et al., 1998):

SSP =

L∑
l=1

N∑
i=1

N∑
j>i

d(gil, gjl) (22)

where gil denotes the acid at l-th column of the sequence
gi. And the Star Alignment Score function (SStar) penal-
izes all applied operations along the way to figure out align-
ments. It can be formulated the same as the objective of the
linear program (5).

In this work, both synthetic datasets and realistic datasets
are experimented. To produce DNA sequences as a quali-
fied synthetic dataset, we employ TKF1 evolutionary mod-
els (Thorne et al., 1991; 1992) to simulate the generation
of insertion and deletion. The TKF1 model have three pa-
rameters: substitution rate α, insertion rate λ, and deletion
rate β, with which every site of a sequence evolves inde-
pendently. An illustrative example of the TKF1 model can

Figure 2. A TKF1 model: each link evolves independently.

be found at Fig.2. At any infinitesimal time interval, an
acid at one position is either deleted with a Poisson rate β,
or substituted with a Poisson rate α. Furthermore, an inser-
tion occurs between two sites with a rate λ. In this work,
we experiment synthetic datasets of three different levels
of mutations: (I) Syn01 and Syn02: α = β = 0.005, (II)
Syn03: α = β = 0.010, and (III) Syn04: α = β = 0.015,
where, in terms of TKF1 model, the insertion rate λ can
be determined by βL

1+L (L is the length of the ancestral se-
quence).

Our experiments compare the ConvexMSA program with
five broadly adopted solvers in the community of bioin-
formatics. These solvers are respectively Clustal-Omega
(Larkin et al., 2007), Kalign (Lassmann & Sonnhammer,
2005), T-COFFEE (Notredame et al., 2000), MAFFET
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Table 1. Comparisons of Sum-of-Pair Score and Star Alignment Score between MSA Solvers. Each dataset is characterized by the
number of sequences N , the length L of its ancestral sequence, and one mutation triplet. The mutation triplet (I,D,M) denotes the
number of insertions I , deletions D, and substitutions M respectively. Score of any match event is 0 whereas any non-match event is 1.

Settings Synthetic Datasets Realistic Datasets
XXXXXXXXXXSolvers

Data Syn01 Syn02 Syn03 Syn04 sDicF sHairpin
N=10, L=30 N=30, L=50 N=30, L=50 N=30, L=50 N=6, L=15 N=20, L=30

(3, 2, 4) (12, 11, 7) (19, 18, 9) (24, 24, 19) (3, 4, 16) (9, 7, 44)
ClustalOmega 311 / 47 3295 / 126 6671 / 274 5946 / 240 119 / 27 1225 / 77

Kalign 88 / 10 1440 / 51 2003 / 71 2612 / 93 104 / 24 874 / 54
T-COFFEE 99 / 12 1031 / 36 1492 / 53 2120 / 75 104 / 24 868 / 53
MAFFET 87 / 10 1196 / 42 1856 / 66 2843 / 103 103 / 27 874 / 54
MUSCLE 87 / 10 1060 / 37 1649 / 59 2311 / 83 105 / 24 874 / 54

ConvexMSA 79 / 9 863 / 30 1285 / 45 1903 / 67 98 / 23 853 / 50
Ground Truth 79 / 9 863 / 30 1310 / 46 1903 / 67 103 / 23 974 / 60

(Katoh et al., 2002), and MUSCLE (Edgar, 2004). The
method of Multi-dimensional Dynamic Programming, due
to its exponential complexity, is not considered as one com-
peting candidate.

From Table 1, it can be observed that our ConvexMSA
solver succeeds to figure out the optimal alignment solution
in both synthetic and real data sets and outperforms other
solvers significantly. Another remarkable thing is that the
ConvexMSA program recovers a solution of better score
than the ground truth in cases with high mutation rates (e.g.
Syn03 and two realistic datasets).

4.2. Motif Discovery (MD)

In this section, we experiment on a synthetic decipher data
set that comprises 0-1 sequences generated by mapping
each character of a sentence to a binary string of length
between [Lm, LM ]. We use a well-known saying by Julius
Caesar, veni vidi vici (I came, I saw, I conquered), as the
source to produce the encoded text. We compare our MD
algorithm with a well-known Multiple EM for Motif Elic-
itation (MEME) method (Bailey et al., 2006). MEME al-
lows gaps between motifs but excludes insertion and dele-
tion within a motif. The algorithm takes number of motifs
K and range of length [Lm, LM ] as inputs.

The following two frames give Motif Discovery result of
MEME and ConvexMD. In either one, ConvexMD algo-
rithm finds motifs with perfect matching, while MEME can
only reach about 75% matching rate. On the first encoded
case, ConvexMD even discovers an unexpected perfect-
matching solution.

Text Encoded Case 1: Lm = 4, LM = 6

010110000101001110001011111101011000100001000010

11111101011000100000110010

ConvexMD sol-1: matching rate 100.0%

010110︸ ︷︷ ︸
v

000101︸ ︷︷ ︸
e

001110︸ ︷︷ ︸
n

0010︸ ︷︷ ︸
i

111111︸ ︷︷ ︸ 010110︸ ︷︷ ︸
v

0010︸ ︷︷ ︸
i

000100︸ ︷︷ ︸
d

0010︸ ︷︷ ︸
i

111111︸ ︷︷ ︸ 010110︸ ︷︷ ︸
v

0010︸ ︷︷ ︸
i

000011︸ ︷︷ ︸
c

0010︸ ︷︷ ︸
i

ConvexMD sol-2: matching rate 100.0%

0101︸ ︷︷ ︸
1

1000︸ ︷︷ ︸
2

0101︸ ︷︷ ︸
1

0011︸ ︷︷ ︸
3

100010︸ ︷︷ ︸
4

111111︸ ︷︷ ︸
5

0101︸ ︷︷ ︸
1

1000︸ ︷︷ ︸
2

1000︸ ︷︷ ︸
2

0100︸ ︷︷ ︸
6

0010︸ ︷︷ ︸
7

111111︸ ︷︷ ︸
5

0101︸ ︷︷ ︸
1

1000︸ ︷︷ ︸
2

1000︸ ︷︷ ︸
2

0011︸ ︷︷ ︸
3

0010︸ ︷︷ ︸
7

MEME sol: matching rate 75.7%

0101︸ ︷︷ ︸
7

100001︸ ︷︷ ︸
3

01 0011︸ ︷︷ ︸
4

1 0001︸ ︷︷ ︸
6

0 111111︸ ︷︷ ︸
1

0 1011︸ ︷︷ ︸
2

000 100001︸ ︷︷ ︸
3

0 0001︸ ︷︷ ︸
6

0

111111︸ ︷︷ ︸
1

0 1011︸ ︷︷ ︸
2

0 0010︸ ︷︷ ︸
5

00 0011︸ ︷︷ ︸
4

0010

Text Encoded Case 2: Lm = 5, LM = 8

01110110011001010110111001001111111110111011001001

01100100010011111111101110110010010110001101001

ConvexMD sol: matching rate 100.0%

01110110︸ ︷︷ ︸
v

01100101︸ ︷︷ ︸
e

01101110︸ ︷︷ ︸
n

01001︸ ︷︷ ︸
i

11111111︸ ︷︷ ︸ 01110110︸ ︷︷ ︸
v

01001︸ ︷︷ ︸
i

01100100︸ ︷︷ ︸
d

01001︸ ︷︷ ︸
i

11111111︸ ︷︷ ︸ 01110110︸ ︷︷ ︸
v

01001︸ ︷︷ ︸
i

01100011︸ ︷︷ ︸
c

01001︸ ︷︷ ︸
i

MEME sol: matching rate 72.2%

0111 01100︸ ︷︷ ︸
3

1 10010︸ ︷︷ ︸
6

10110︸ ︷︷ ︸
6

111 00100︸ ︷︷ ︸
2

11111︸ ︷︷ ︸
7

11 11011︸ ︷︷ ︸
4

1011 00100︸ ︷︷ ︸
2

1011 00100︸ ︷︷ ︸
1

01001︸ ︷︷ ︸
5

11111︸ ︷︷ ︸
7

1 11011︸ ︷︷ ︸
4

1011 00100︸ ︷︷ ︸
1

1 01100︸ ︷︷ ︸
3

011 01001︸ ︷︷ ︸
5
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5. Appendix A: Proof for Theorem 2
Recall that the Augmented Lagrangian L(W1,W2, Y ) is of
the form

〈D,W1〉+ 〈Y,W1 −W2〉+
ρ

2
‖W1 −W2‖2.

Then let X = [W1;W2] be the primal variables and denote

X (Y ) := {X|X = argmin
X
L(X,Y )}

with
X̄t := argmin

X̄∈X (Y t)

‖X̄ −Xt‖,

and let

AX =
[
I −I

] [ W1

W2

]
= W1 −W2 (23)

and

〈C,X〉 =

[
D
O

]T [
W1

W2

]
= 〈D,W1〉 (24)

The Augmented Lagrangian can be re-written as

L(X,Y ) = 〈C,X〉+ 〈Y,AX〉+
ρ

2
‖AX‖2. (25)

The dual function is

d(Y ) = min
X∈Conv(A)×Conv(G)

L(X,Y )

and
d∗ = max

Y
d(Y )

is the optimal dual function value. Then we measure the
sub-optimality of iterates {(Xt, Y t)}Tt=1 given by GDMM
in terms of dual function difference

∆t
d = d∗ − d(Y t)

and the primal function difference for a given dual iterate
Y t:

∆t
p = L(Xt+1, Y t)− d(Y t)

yielded by Xt+1 obtained from AFW steps. Then we have
following lemma.
Lemma 1 (Dual Progress). Each iteration of GDMM (Al-
gorithm 1) has

∆t
d −∆t−1

d ≤ −η(AXt)T (AX̄t). (26)

Proof.

∆t
d −∆t−1

d = (d∗ − d(Y t))− (d∗ − d(Y t−1))

= L(X̄t−1, Y t−1)− L(X̄t, Y t)

≤ L(X̄t, Y t−1)− L(X̄t, Y t)

= 〈Y t−1 − Y t,AX̄t〉
= −η〈AXt,AX̄t〉

where the first inequality follows from the optimality of
X̄t−1 for the function L(X,Y t−1) defined by Y t−1, and
the last equality follows from the dual update in GDMM
(14).

On the other hand, the following lemma gives an expres-
sion on the primal progress that is independent of the algo-
rithm used for minimizing Augmented Lagrangian

Lemma 2 (Primal Progress). Each iteration of GDMM (Al-
gorithm 1) has

∆t
p −∆t−1

p ≤L(Xt+1, Y t)− L(Xt, Y t)

+ η‖AXt −AX̄t‖2 − η〈AXt,AX̄t〉

Proof.

∆t
p −∆t−1

p

=L(Xt+1, Y t)− L(Xt, Y t−1)− (d(Y t)− d(Y t−1))

=L(Xt+1, Y t)− L(Xt, Y t) + L(Xt, Y t)− L(Xt, Y t−1)

+ (d(Y t−1)− d(Y t))

≤L(Xt+1, Y t)− L(Xt, Y t) + η‖AXt‖2 − η〈AXt,AX̄t〉

where the last inequality uses Lemma 1 on d(Y t−1) −
d(Y t) = ∆t

d −∆t−1
d .

By combining results of Lemma 1 and 2, we can obtain a
joint progress of the form

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ L(Xt+1, Y t)− L(Xt, Y t) + η‖AXt −AX̄t‖2

− η‖AX̄t‖2
(27)

Note the only term that can be positive in (27) is the second.
To guarantee descent of the joint progress, we bound the
second term with the primal gap L(Xt, Y t)− d(Y t) given
by the following lemma

Lemma 3.

‖AXt −AX̄t‖2 ≤ 2

ρ
(L(Xt, Y t)− L(X̄t, Y t)) (28)

Proof. Let

L̃(X,Y ) = h(X) + g(AX),

where
g(AX) =

ρ

2
‖AX‖2

and
h(X) = 〈C,X〉+ 〈Y,AX〉+ IX∈C
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, where IX∈C = 0 if X ∈ C and IX∈C = ∞ otherwise,
and

C = {(W1,W2) |W1 ∈ Conv(A),W2 ∈ Conv(G)}.
(29)

Note we have L̃(X̄t, Y t) = L(X̄t, Y t), L̃(Xt, Y t) =
L(Xt, Y t) due to feasible iterates. According to the def-
inition of d(Y ), we know that

0 ∈ ∂X L̃(X̄t, Y ) = ∂h(X̄t) + AT∇g(A(X̄t))

And by the convexity of h(·) and the strong convexity of
g(·), we have

h(Xt)− h(X̄t) ≥ 〈∂h(X̄t), Xt − X̄t〉

and

g(A(Xt))− g(A(X̄t))

≥〈AT (∇g(A(X̄t))), Xt − X̄t〉+
ρ

2
‖A(Xt))−A(X̄t)‖2

The the above two together implies

L(Xt, Y t)− L(X̄t, Y t) ≥ ρ

2
‖A(Xt))−A(X̄t)‖2

which leads to our conclusion.

Then to guarantee significant descent of (27) relative to the
current sub-optimality, we need to lower bound the magni-
tude of first term L(Xt+1, Y t) − L(Xt, Y t) and last term
−η‖AX̄t‖2. Note by Danskins theorem, we have

∇d(Y t) = AX̄t

and we have the following lower bound on ‖AX̄t‖ by the
concavity of d(Y )

d∗ − d(Y t) ≤ 〈AX̄t, Y t∗ − Y t〉
≤ ‖AX̄t‖‖Y t∗ − Y t‖
≤ ‖AX̄t‖RY

where Y t∗ is the maximizer of d(Y ) that is closest to Y t

and RY is an upper bound on the distance (in `2 norm) of
dual iterates {Y t}Tt=0 to its projection to the set of maxi-
mizer of d(Y ). Therefore, the progress (27) can be lower
bounded as

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤L(Xt+1, Y t)− L(Xt, Y t)

+
2η

ρ
(L(Xt, Y t)− L(X̄t, Y t))− η

R2
Y

∆t2
d

(30)

The remaining thing to do is show that one good step
of Away-Step Frank-Wolfe iterate suffices to give descent
amount L(Xt+1, Y t)−L(Xt, Y t) lower bounded by some

constant multiple of the primal sub-optimalityL(Xt, Y t)−
L(X̄t, Y t). Then by selecting GDMM step size η small
enough, the RHS of (30) leads to a positive descent amount.
Note this can be achieved by leveraging recent result from
(Lacoste-Julien & Jaggi, 2015), who shows a linear-type
convergence of AFW, even for non-strongly convex func-
tion of form (25). We thus provide the following lemma.

Lemma 4. The AFW (Algorithm 2) performed on X =
(W1,W2) gives descent amount

L(Xt+1, Y t)− L(Xt, Y t)

≤ − κ

1 + κ
(L(Xt, Y t)− L(X̄t, Y t))

(31)

where κ := µf/(8C
A
f ), µf is the generalized geometric

strong convexity constant for function L(.) in domain C,
and CAf is the corresponding smoothnesss constant.

Proof. Note the AL (25) is of the form

F (X) = L(X,Y ) = 〈C,X〉+ f(AX) (32)

where f(AX) = ρ
2‖AX +Y/ρ‖2 + const. is a ρ-strongly

convex function w.r.t. to AX , and we are minimizing
the function subject to a polyhedral domain C (defined at
(29)). Therefore, by Theorem 10 of (Lacoste-Julien &
Jaggi, 2015), we have the generalized geometrical strong
convexity constant µf for function L(.) in domain C that
has

µf ≥ µ(PWidth(C))2 (33)

where PWidth(C) > 0 is the pyramidal width of polyhe-
dron C and µ is the generalized strong convexity constant
of function (32) defined in Lemma 9 of (Lacoste-Julien &
Jaggi, 2015). By definition of the geometric strong convex-
ity constant, we have

F (X)− F ∗ ≤ g2
X

2µf
(34)

from (28) in (Lacoste-Julien & Jaggi, 2015), where gX =
〈∇F (X),vFW (X)− vA(X)〉 for any FW atom vFW (X)
and away atom vA(X) at point X . Note, since the convex
polyhedron C is separable w.r.t. W1, W2, we have

vFW (X) =

[
v

(1)
FW

v
(2)
FW

]
(35)

and

vA(X) =

[
v

(1)
A

v
(2)
A

]
(36)

Then consider the progress given by a non-drop (”good”)
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step at iterate s of the AFW. We have

F (Xs+1)− F (Xs) ≤ −γ
2
gs +

CAf
2
γ2

≤ − g2
s

16CAf

≤ −µf (F (Xs)− F ∗)
8CAf

(37)

assuming γ∗ = gs/(2C
A
f ) < 1, where gs =

〈−∇F,vFW (Xs) − vA(Xs)〉, CAf is the curvature con-
stant of F (X) on domain C (eq. (26) in (Lacoste-Julien &
Jaggi, 2015)). The first inequality follows from the fact that
AFW chooses the smaller one between 〈∇F,dFW 〉 and
〈∇F,dA〉 as the descent direction. The second inequal-
ity is given by minimizing RHS w.r.t. γ ∈ [0, 1]. And the
third inequality is from (34). In case γ∗ = gs/(2C

A
f ) > 1,

we have γ = 1 and

F (Xs+1)− F (Xs) ≤ −γ
2
gs +

CAf
2
γ2

≤ −gs/4 ≤ −(F (Xs)− F ∗)/4

≤ −µf (F (Xs)− F ∗)
8CAf

(38)
which leads to the same result.

Then let κ = µf/(8C
A
f ). We have

F (Xt+1)− F (Xt) ≤ F (Xs+1)− F (Xs)

≤ −κ(F (Xs)− F ∗)
≤ −κ(F (Xt+1)− F ∗)

where the first inequality is due to F (Xt) ≥ F (Xs) (since
AFW is a descent algorithm). Through rearrangement we
have

F (Xt+1)− F ∗ ≤ 1

1 + κ
(F (Xt)− F ∗)

which then leads to the conclusion.

Now we provide proof of the main theorem 2 as follows.

Proof. By lemma 4 and (30), we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ −κ
1 + κ

(
L(Xt, Y t)− L(X̄t, Y t)

)
+

2η

ρ
(L(Xt, Y t)− L(X̄t, Y t))− η

R2
Y

∆t
d.

(39)

Then by choosing η < κρ
2(1+κ) , we have guaranteed descent

on ∆p + ∆d for each GDMM iteration. By choosing η ≤

κρ
4(1+κ) , we have

(∆t
d + ∆t

p)− (∆t−1
d + ∆t−1

p )

≤ −κ
2(1 + κ)

(
L(Xt, Y t)− L(X̄t, Y t)

)
− η

R2
Y

∆t
d

2

≤ −κ
2(1 + κ)

∆t
p −

κρ

4(1 + κ)R2
Y

∆t
d

2

≤ −κ
2(1 + κ)(∆0

p + ∆0
d)

∆t
p

2 − κρ

4(1 + κ)R2
Y

∆t
d

2

≤−
(

κ

4(1 + κ)
min(

1

∆0
p + ∆0

d

,
ρ

2R2
Y

)

)
(∆t

p + ∆t
d)

2

where the third inequality is by non-increasing of {∆t
p +

∆t
d}∞t=1. Then recursion of the form ∆t − ∆t−1 ≤ c∆t2

leads to the conclusion.


