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1 Proof for properties of proximal operations

The proximal operator prox(.) is defined as

xt+1 = prox(xt+ 1
2
) = arg

x
min h(x) +

M

2
∥x− xt+ 1

2
∥22. (1)

Lemma 1. Define ∆Px = x− prox(x), the following properties hold for the proximal operation
(1).

1. M∆Px ∈ ∂h(prox(x)).

2. ∥prox(x1)− prox(x2)∥22 ≤ ∥x1 − x2∥22 − ∥∆Px1 −∆Px2∥22.

Proof. The first property follows directly from the optimality condition of (1). The second property
holds since for M∆Px1 ∈ ∂h(prox(x1)), M∆Px2 ∈ ∂h(prox(x2)) we have ⟨M∆Px1 −
M∆Px2,prox(x1)− prox(x2)⟩ ≥ 0, and thus,

∥x1 − x2∥2 = ∥ (prox(x1)− prox(x2)) + (∆Px1 −∆Px2)∥2

≥ ∥prox(x1)− prox(x2)∥2 + ∥∆Px1 −∆Px2∥2,
which gives the second property.

The proximal operator proxH(.) is defined for any PSD matrix H as

proxH(x) = arg
v

min h(v) +
1

2
∥v − x∥2H . (2)

Lemma 2. Define ∆Px = x−proxH(x), the following properties hold for the proximal operator:

1. H∆Px ∈ ∂h(proxH(x)).

2. ∥proxH(x1)− proxH(x2)∥2H ≤ ∥x1 − x2∥2H .

Proof. The first property follows directly from the optimality condition of (2). The second prop-
erty holds since for H∆Px1 ∈ ∂h(prox(x1)), H∆Px2 ∈ ∂h(prox(x2)) we have ⟨H∆Px1 −
H∆Px2,prox(x1)− prox(x2)⟩ ≥ 0, and thus,

∥x1 − x2∥2H = ∥ (proxH(x1)− proxH(x2)) + (∆Px1 −∆Px2)∥2H
≥ ∥proxH(x1)− proxH(x2)∥2H + ∥∆Px1 −∆Px2∥2H
≥ ∥proxH(x1)− proxH(x2)∥2H ,

where the second inequality follows from the PSD of H .
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2 Proof of Lemma 3

Lemma 3 (Optimal Set). Let Ē be the active set at optimal and Ē+ = {j| ∥ ΠMj (ρ̄)∥∗ = λ} be its
augmented set (which is unique since ρ̄ is unique) such that ΠMj (ρ̄) = λāj , j ∈ Ē+. The optimal
solutions then form a polyhedral set

X̄ =
{
x | ΠT (x) = z̄ and x ∈ Ō

}
, (3)

where Ō =
{
x | x =

∑
j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+

}
is the set of x with ρ̄ ∈ ∂h(x).

Proof. The optimality condition are g(x) = ḡ and ρ̄ ∈ ∂h(x) by Theorem 1. Since ΠT (x) = z̄,
we have g(x) = ḡ already. Therefore, we only need to show that ρ̄ ∈ ∂h(x) iff x ∈ Ō.

Suppose ρ̄ ∈ ∂h(x). Then for j /∈ Ē+, we know ∥ΠMj (ρ̄)∥∗ < 1, which means ΠMj (x) = 0, and
for j ∈ Ē+, we know ΠMj (ρ̄) = λāj , which means ΠMj (x) can be 0 or cjāj for some cj > 0.
Therefore, x must have the form x =

∑
j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+.

Now for the other direction, suppose x =
∑

j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+ and E ⊆ Ē+ is the set
for which cj > 0, j ∈ E . Then since ∥ΠMj (ρ̄)∥∗ ≤ 1, j /∈ E and for j ∈ E ⊆ Ē+ we have
ΠMj (ρ̄) = λāj , we conclude that ρ̄ ∈ ∂h(x).

3 Proof of Lemma 5

Lemma 5. Let Ā = span(ā1, ā2 . . . , ā|Ē+|). Suppose ∥x∥ ≤ R and ΠMj (x) = 0 for j /∈ Ē+.
Then

λ2∥x−ΠĀ(x)∥22 ≤ R2∥ρ− ρ̄∥22,
where ρ ∈ ∂h(x) and ρ̄ is as defined in Theorem 1.

Proof. Since ΠMj (x) = 0 for j /∈ Ē+, we have x =
∑

j∈Ē+ cjaj for some aj ∈ Mj . Then

∥x−ΠĀ(x)∥22 = ∥
∑
j∈Ē+

cjaj −
∑
j∈Ē+

cj⟨aj , āj⟩āj∥22

=
∑
j∈Ē+

c2j∥aj − ⟨aj , āj⟩āj∥22 ≤
∑
j∈Ē+

c2j∥aj − āj∥22.

Since ΠMj (ρ) = λaj , ΠMj (ρ̄) = λāj , we have

∥x−ΠĀ(x)∥22 ≤ 1

λ2

∑
j∈Ē+

c2j∥ΠMj (ρ)−ΠMj (ρ̄)∥22 ≤ R2

λ2
∥ρ− ρ̄∥22

as claimed.

4 Proof of Lemma 6

Lemma 6 (Optimality Condition). For any matrix H satisfying CNSC-T , the update

∆x = argmin
d

h(x+ d) + g(x)Td+
1

2
∥d∥2H (4)

has
F (x+ t∆x)− F (x) ≤ −t∥∆z∥2H +O(t2), (5)

where ∆z = ΠT (∆x). Furthermore, if x is an optimal solution, ∆x = 0 satisfies (4).

Proof. By smoothness of f(x) and convexity of h(x), we have

F (x+ t∆x)− F (x) = h(x+ t∆x)− h(x) + f(x+ t∆x)− f(x)

≤ t(h(x+∆x)− h(x)) + g(x)T (t∆x) +O(t2).
(6)
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Then we try to bound the descent amount predicted by gradient t(h(x+∆x)−h(x)+ g(x)T∆x).
Since ∆x is optimal solution of (4), we have

h(x+∆x) + g(x)T∆x+
1

2
∥∆x∥2H

≤h(x+ t∆x) + g(x)T (t∆x) +
1

2
∥t∆x∥2H

≤th(x+∆x) + (1− t)h(x) + g(x)T (t∆x) +
1

2
∥t∆x∥2H ,

(7)

which implies

(1− t)(h(x+∆x)− h(x)) + (1− t)g(x)T∆x+
1− t2

2
∥∆x∥2H ≤ 0, (8)

and therfore,

(h(x+∆x)− h(x)) + g(x)T∆x ≤ −1 + t

2
∥∆x∥2H = −1 + t

2
∥∆z∥2H , (9)

where ∆z = ΠT (∆x) and last inequality follows from CNSC-T of H . Let t → 1 and combine (9)
and (6), we obtain

F (x+ t∆x)− F (x) ≤ −t∥∆z∥2H +O(t2), (10)
which shows ∆x obtained from (4) is a descent direction if ∆z ̸= 0.

Now suppose x is an optimal solution of F (x). Then the ∆x defined in (4) cannot be a descent
direction, which means ∆z must be 0. However, since f(x) and H satisfy CNSC-T , when ∆z = 0,
(4) reduced to

∆x = argmin
∆y∈T ⊥

h(x+∆y). (11)

∆x = 0 satisfies (11) since x = y + z is already a minimum of h(x) + f(x), while f(x) does not
depend on y, where y = ΠT ⊥(x).

5 Proof of Lemma 7

Lemma 7. Suppose h(x) and f(x) are Lipchitz-continuous with Lipchitz constants Lh and Lf . In
quadratic convergence phase (defined in Theorem 3), Proximal Newton Method has

F (xt)− F (x̄) ≤ L∥zt − z̄∥, (12)

where L = max{Lh, Lf} and zt = ΠT (xt), z̄ = ΠT (x̄).

Proof. LWe prove (12) by showing that |f(z1) − f(z2)| ≤ Lf∥z1 − z2∥ and |h(z1 + ŷ(z1)) −
h(z2 + ŷ(z2))| ≤ Lh∥z1 − z2∥ for any z1 ∈ T , z2 ∈ T . Since f(z) does not depend on the null-
component y, the first inequality holds directly from the Lipchitz-continuity of f(z). The second
inequality holds since

h(z1 + ŷ(z1)) ≤ h(z1 + ŷ(z2)) ≤ h(z2 + ŷ(z2)) + Lh∥z1 − z2∥

and
h(z2 + ŷ(z2)) ≤ h(z2 + ŷ(z1)) ≤ h(z1 + ŷ(z1)) + Lh∥z1 − z2∥

by the definition of ŷ(z1), ŷ(z2) and Lipchitz-continuity of h(x).
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