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1 Proof for properties of proximal operations

The proximal operator prox(.) is defined as

. M
Tiy = prox(a:H%) = argmin h(x) + = [l — Ty ||§ (D
x

Lemma 1. Define APz = x — prox(z), the following properties hold for the proximal operation
().
1. MAPz € Oh(prox(z)).

2. |[prox(z1) — prox(x2)||3 < ||lz1 — xall5 — [[AT@1 — APz,|l3.

Proof. The first property follows directly from the optimality condition of (1). The second property
holds since for MAPz, € Oh(prox(x,)), MAYz, € Oh(prox(zs)) we have (MAFz; —
MAF x,, prox(z;) — prox(xz;)) > 0, and thus,

|1 — @2||* = || (prox(x1) — prox(@2)) + (A@; — AP xy)|?
> |lprox(z;) — prox(x»)||* + ||AP:B1 — AP:B2||2,
which gives the second property. O

The proximal operator prox(.) is defined for any PSD matrix H as
proxy(x) = aig min h(v) + %Hv —x||%. (2)
Lemma 2. Define APz = x —prox (z), the following properties hold for the proximal operator:
1. HAYx € Oh(proxy(x)).
2. |lproxy (®1) — proxy (x2) [ < llzy — 2%

Proof. The first property follows directly from the optimality condition of (2). The second prop-
erty holds since for HAPz; € Oh(prox(z1)), HA zy € Oh(prox(z2)) we have (HA Pz, —
HAF x5, prox(x;) — prox(zs)) > 0, and thus,

lzs — ol = || (proxp(z1) — proxy (a2)) + (A@1 — Alas)|;
> |lproxy (z1) — proxy (2)|7 + [A a1 — Al |3

> |[proxy (@1) — prox (a2)||7,
where the second inequality follows from the PSD of H. [



2 Proof of Lemma 3

Lemma 3 (Optimal Set). Let € be the active set at optimal and ET = {j| || Ly, ()|« = A} be its
augmented set (which is unique since p is unique) such that I, (p) = \aj, j € ET. The optimal
solutions then form a polyhedral set

X ={z|lly(x)=zandx € O}, 3)

where O = {:B | =3 ce+ cij,c; > 0,5 € 5“‘} is the set of x with p € Oh(x).

Proof. The optimality condition are g(x) = g and p € 9h(x) by Theorem 1. Since II1(x) = Z,
we have g(x) = g already. Therefore, we only need to show that p € dh(x) iff x € O.

Suppose p € dh(x). Then for j ¢ £, we know ||[TLy, (p)]« < 1, which means Iy, (@) = 0, and
for j € €1, we know IIr, (p) = Aa;, which means I, () can be 0 or c;a; for some ¢; > 0.
Therefore,  must have the form « = Zjngr cjaj,c; > 0,5 € Et.

Now for the other direction, suppose * = Zjngr cjaj,c; > 0,7 € ET and £ C E7 is the set

for which ¢; > 0,5 € €. Then since ||[ILy, (p)|« < 1,5 ¢ € and for j € € C €T we have
I, (p) = Aaj, we conclude that p € Oh(zx). O

3 Proof of Lemma 5

Lemma 5. Let A = span(ai,as .. - @g+)). Suppose ||z|| < R and llp;(z) = 0 for j ¢ g+,
Then
Nz —Ta()|I3 < R*|lp — plI3,

where p € Oh(z) and p is as defined in Theorem 1.

Proof. Since Ipq, (x) = 0 for j ¢ £, we have x = 3, ¢, ¢;a; for some a; € M;. Then

lz —Ta(@)3 =1l Y cja; = Y cifaj.a;)ayll3

jeEF je&E+
=Y Alla; - (aj,a;)a;]3 < Y Fla; — a3
jeE+ je&+

Since v, (p) = Aay, laq, (P) = Aaj, we have
9o _ 1 2 o R? _12
le = TLa()]l2 < +5 > Sl (p) — T (P)]5 < Sz lle =Pl
je&E+
as claimed. [
4 Proof of Lemma 6
Lemma 6 (Optimality Condition). For any matrix H satisfying CNSC-T, the update
1
Az = argmin h(z+d)+g(x)'d + §||d||%, “4)
d
has

F(x +tAz) — F(z) < —t|Az||4 + O(t?), (5)
where Az = Il (Ax). Furthermore, if ® is an optimal solution, Ax = 0 satisfies (4).

Proof. By smoothness of f(x) and convexity of h(x), we have
F(x +tAz) — F(x) = h(x + tAzx) — h(x) + f(x + tAz) — f(x)

T 2 (6)
<t(h(x + Az) — h(x)) + g(x)” (tAz) + O(t%).



Then we try to bound the descent amount predicted by gradient t(h(x + Ax) — h(x) + g(x)T Az).
Since Ax is optimal solution of (4), we have

1
Wz +Az) +g(x)" Az + || Al
1
<h(z + tAz) + g(x)" (tAz) + §HtAa:||§1 (7
1
<th(x + Ax) + (1 — t)h(z) + g(z)T (tAx) + §\|tm;||§{,

which implies

1—¢2

(1 —t)(h(x + Az) — h(z)) + (1 — t)g(x) Ax + 5 |Az|3 <0, ®)
and therfore,
(h(a + Az) — h(@)) + g(@) Az < Al = 2tz ©

where Az = II7(Ax) and last inequality follows from CNSC-T of H. Lett — 1 and combine (9)
and (6), we obtain
F(x +tAx) — F(z) < —t|Az|)% + O(t?), (10)

which shows Ax obtained from (4) is a descent direction if Az # 0.

Now suppose « is an optimal solution of F'(x). Then the Az defined in (4) cannot be a descent
direction, which means Az must be 0. However, since f(x) and H satisfy CNSC-7, when Az = 0,
(4) reduced to
Az = argmin h(x + Ay). (11)
AyeT+

Ax = 0 satisfies (11) since & = y + z is already a minimum of h(x) + f(x), while f(x) does not
depend on y, where y = Il (). O

5 Proof of Lemma 7

Lemma 7. Suppose h(x) and f(x) are Lipchitz-continuous with Lipchitz constants Ly, and Ly. In
quadratic convergence phase (defined in Theorem 3), Proximal Newton Method has

Fx,) - F(@) < Lz — 2], (12)
where L = max{Ly, Ly} and z; = Il (x,), 2 = I (Z).
Proof. LWe prove (12) by showing that | f(z1) — f(22)| < L¢|lz1 — 22| and |h(z1 + ¥(21)) —
h(z2 + 9y(22))| < Lp||z1 — 22| forany z1 € T, z2 € T. Since f(z) does not depend on the null-

component y, the first inequality holds directly from the Lipchitz-continuity of f(z). The second
inequality holds since

h(z1+9(z1)) < h(z1 + Y(22)) < h(z2 + Y(22)) + Lal|z1 — 22|

and
h(z2 +9(22)) < h(z2 +9(21)) < h(z1 +Y(21)) + Lnllz1 — 22|
by the definition of §(z1), ¥(z2) and Lipchitz-continuity of h(x). O



